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MODULATION OF ESTRONE EXPOSURE EFFECTS MEDIATED THROUGH 
ENVIRONMENTAL FACTORS IN MALE FATHEAD MINNOWS, PIMEPHALES 

PROMELAS 
 
 

David J. Feifarek 
 
 

 Laboratory exposures indicate that estrogens and estrogen mimics can cause 
endocrine disruption in male fathead minnows (Pimephales promelas). In the wild, 
conditions are not static as is often the case in the laboratory. Changes in 
environmental parameters can trigger physiological and anatomical changes in fish 
that have the potential to alter the uptake and observed effects of estrogenic chemicals. 
To explore the role of environmental variables on the expression of biomarkers of 
estrogenic exposure, adult male P. promelas were exposed to estrone under various 
environmental conditions (differing temperatures, diets, salinities and dissolved 
oxygen concentrations) in the laboratory for 21 days in a flow-through system. Plasma 
vitellogenin, morphological characteristics, hematological parameters, and 
histopathology were assessed to determine the severity of estrogenic effect. Plasma 
vitellogenin was most drastically elevated in fish exposed to estrone at a low 
temperature (18°C) and fed a restricted diet, and was not significantly elevated over 
the control when fish were exposed to the same estrone concentration (78 ng/L at a 
high temperature (26°C) and fed a restricted diet. This may have implications in field 
studies taken during seasons in which these conditions are present, and vitellogenin is 
used as an indicator of the health of an aquatic system. Salinity at 10 ppm and 50 ppm 
added NaCl had no significant effect on biomarkers of estrogenic exposure, however 
estrone concentrations in excess of 85 ng/L corresponded with significantly reduced 
body condition factor compared to control. Fish exposed to estrone (13 and 51 ng/L) at 
low dissolved oxygen (hypoxic) conditions showed significantly greater increase in 
plasma vitellogenin concentrations in comparison to those exposed at near-saturated 
dissolved oxygen. This effect was not observed in fish exposed to much higher estrone 
concentrations (292 and 390 ng/L). Significant reductions in hematocrit and 
gonadosomatic index compared to control were also noted at high (282 ng/L) estrone 
concentrations. These data indicate that environmental conditions modulate the effects 
of estrogenic exposure in male P. promelas. We anticipate that accounting for a 
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spectrum of environmental conditions may be necessary for laboratory exposures 
designed to assess the impact of exogenous estrogenic chemicals.  
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Chapter I 
 
 

LITERATURE REVIEW 
 
 

Biology of the Fathead Minnow, Pimephales promelas 

The fathead minnow, Pimephales promelas, is a teleost fish belonging to the 

family Cyprinidae (Geiger et al., 1988). Males are generally larger than females, and 

may exceed 9 cm in length (Scott, 1964). Both sexes are deep bodied, with a single, 

soft-rayed dorsal fin, slightly forked caudal fin, a blunt head with a cranial hump 

(more prominent in males) and a small, subterminal mouth (Nelson and Paetz, 1992). 

During breeding season, Pimephales promelas exhibit strong sexual dimorphism. 

Males develop broad, black vertical bands, three rows of keratinized nuptial tubercles 

on the snout, and a thick dorsal pad anterior to the dorsal fin (Smith, 1979; Fig. 1.2). 

The species is distributed widely throughout North America (Fig. 1.1), and has been 

introduced beyond its native range as a result of its popularity as a baitfish among 

anglers (Pflieger, 1975). Pimephales promelas are omnivorous feeders and can 

tolerate a range of pH and salinities (McCarraher and Thomas, 1968), making them a 

highly successful cyprinid species that plays an important role in various food webs 

(Nelson and Paetz, 1992; Jackson and Mandrack, 2002). They also possess an 

interesting, and highly debated evolutionary adaptation: the ability to secrete a  
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pheromone alarm substance, called Schreckstoff, which elicits an escape response 

when epidermal cells sustain mechanical damage (Smith, 1986; Mathis and Smith, 

1992). Due to ease of culturing, wide geographical range, rapid development (sexual 

maturity by four months post-hatch), ecological relevance, fractional spawning and 

sensitivity to environmental pollutants (Denny, 1987; Geiger et al., 1988; Jensen et al., 

2001) the fathead minnow is a popular model for toxicity testing.   

Figure 1.1. Native range of Pimephales promelas (Credit: William Heikkila). 

As a fractional spawner, Pimephales promelas can spawn continuously under 

the right conditions in the laboratory (Gale and Buynak, 1982; Jensen et al., 2001). In 
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nature, spawning begins when temperatures reach approximately 15.6°C and 

photoperiod approaches 16 hours light/8 hours dark, and continues until the fall, until 

temperatures drop below 15.6°C to 18.4°C (Prather, 1957; Duda, 1989; Danylchuk 

and Tonn, 2001). Male Pimephales promelas exhibit distinct, territorial behavior 

during the breeding season (McMillan and Smith, 1974). He will find a small 

overhanging rock or fallen debris and use his tubercles to clean the overhead surface, 

before attempting to attract females whilst driving away other males. If he is 

successful, the female deposits the eggs in a single layer on the overhead surface. The 

male then guards the eggs aggressively, using his tubercles to drive away intruders. 

The spongy dorsal pad is used to clean and agitate the eggs to prevent stagnation until 

they hatch in approximately 4-5 days (Geiger et al., 1988; Nelson and Paetz, 1992; 

Ankley and Villanueve, 2006). 

Figure 1.2. Male Pimephales promelas with a prominent dorsal pad. 
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The hypothalamic-pituitary-gonadal axis (Fig. 1.3) is largely conserved across 

vertebrates (Ankley and Johnson, 2004; Norris, 2007; Silverthorn, 2013). In normal 

female Pimephales promelas, stimulation of follicular development originates in the 

hypothalamus. Here, gonadotropin-releasing hormone is secreted via direct 

innervation to the pituitary gland. This action signals the release of two gonadotropic 

hormones: luteinizing hormone and follicle-stimulating hormone. Luteinizing 

hormone stimulates the ovarian thecal cells to release androgens, which diffuse to the 

granulosa cells of the ovary. Here, follicle-stimulating hormone facilitates aromatase 

production, converting the androgens into estrogen (Hadley and Levine, 2006). The 

estrogen produced is responsible for oocyte development, secondary sex 

characteristics, negative feedback to the hypothalamus and pituitary, and hepatic 

secretion of vitellogenin, an egg-yolk lipoprotein expressed in oviparous species, into 

the bloodstream (Hoar and Randall, 1988; Hadley and Levine, 2006). Production of 

vitellogenin is triggered via the binding of estrogens to hepatic estrogen receptors. 

This binding triggers the dissociation of heat-shock proteins, causing the receptors to 

become activated and dimerize. Upon recruiting co-activator proteins, they bind to 

palindromic estrogen response element sequences on DNA, facilitating transcription 

of vitellogenin mRNA (Hadley and Levine, 2006; Hoar and Randall, 1988; Sumpter 

and Jobling, 1995). Exogenous estrogens (or estrogen mimics) can bind hepatic 

estrogen receptors in the same fashion as endogenous estrogens (Ankley and Johnson, 

2004). 
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Figure 1.3. A depiction of the Pimephales promelas hypothalamic-pituitary-gonadal 
axis. 
 
 
Endocrine Disruption 

 Endocrine disrupting chemicals can interfere with reproduction and 

development in both humans and wildlife (Colborn et al., 1993). Estrogens, and 

estrogen mimics, are a potent class of endocrine disrupting chemicals that interfere 

directly with the hypothalamic-pituitary-gonadal axis. Male hepatocytes contain the 

machinery necessary for vitellogenin synthesis. Thus, the levels of vitellogenin 

circulating in blood plasma can be used to assess estrogen exposure in male fish 

(Sumpter and Jobling, 1995; Panter et al., 1998; Thorpe et al., 2007; Matozzo et al., 

2008; Shappell et al., 2010). Estrogen-induced vitellogenesis in male summer flounder 

(Paralichthys dentatus) injected with a high dose of estradiol (10 mg/kg of body 
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weight) resulted in toxic accumulation of the protein in the liver, kidneys and testes of 

treated fish. This accumulation was associated with obstruction of renal glomeruli and 

hepatocytic hypertrophy, and ultimately resulted in the death of the fish (Folmar et al., 

2001). Since males lack a normal repository for vitellogenin - its intended target is the 

ovary in females - it is suggested that it becomes concentrated in kidney and liver, 

whereby organ failure can occur (Thorpe et al., 2007). The inability for male teleosts 

to effectively eliminate vitellogenin is further exemplified in Thorpe et al. (2007). The 

authors found that fish exposed to 29 and 60 ng estradiol/L exhibited elevated plasma 

vitellogenin concentrations over control for 70 days after cessation of exposure. 

Vitellogenin induction is not the extent of the biological effect of estrogen 

exposure in male fish. While it remains challenging to link organismal effects with 

population decline (Mills and Chichester, 2005; Palace et al., 2009), there is evidence 

to suggest that elevated plasma vitellogenin levels are indicative of poor reproductive 

success. Kidd et al. (2007) observed a population collapse and concurrent elevations in 

plasma vitellogenin concentrations in Pimephales promelas following exposure to 

ethynylestradiol, a synthetic estrogen found in birth control pharmaceuticals, in a 

whole-lake study. Ethynylestradiol is approximately six times as potent as estrone 

(Schultz et al., 2013) and tends to persist for a greater duration in water (Ying et al., 

2002). Morphological and behavioral perturbations have also been observed in 

association with estrogenic exposure. Histological analysis of river roach (Rutilus 

rutilus) revealed intersex incidence in up to 100% of fish sampled downstream from 

wastewater effluent in several rivers throughout the British Isles (Jobling et al., 1998). 
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Control sites averaged from 4% to 18.1% intersex incidence. Intersex, the presence of 

oocytes in male gonadal tissue, has been found to be indicative of poor reproductive 

success in the rainbow darter (Etheostoma caeruleum) (Fuzzen et al., 2015). 

Microscopic analysis of estrogen-exposed male tissues can also reveal reduced 

masculinity (percentage of mature spermatozoa) in gonad histology (Vajda et al., 

2011), and hepatocyte hypertrophy due to vitellogenic activity (Wester et al., 2003; 

Wolf et al., 2005). Reduction in the prominence of male secondary sex characteristics 

(tubercles, dorsal pad, and banding) has been observed in association with estrogen 

receptor agonists in male Pimephales promelas (Miles-Richardson, 1999; Harries et 

al., 2000; Vajda et al., 2011), and estrone has been shown to reduce the escape 

response of exposed Pimephales promelas, involved in predator avoidance (McGee et 

al., 2009). 

 
Occurrence of Estrogenic Chemicals in the Environment 

Environmental estrogens often originate from agricultural runoff (Soto et al., 

2004; Matthiessen et al., 2006; Chen et al., 2010) and developed urban areas (Barber 

et al., 2011; Lee et al., 2011) (Table 1.1). Estradiol, the hormone synthesized by 

follicle cells surrounding the developing oocyte (Hoar and Randall, 1988), is perhaps 

the most commonly studied natural estrogen with regards to endocrine disruption in 

fish (Panter et al., 1998; Miles-Richardson et al., 1999; Folmar et al., 2001; Jensen et 

al., 2001; Leino et al., 2005; Hyndman et al., 2010). Research suggests, however, that 

estrone may be of greater relevance. It has historically been suggested that estrone is 

less potent than estradiol, however relative potency estimates vary from 5% to 80%, 
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and seem to depend on the endpoint being measured (Hoar and Randall, 1988; Thorpe 

et al., 2003; Van den Belt et al., 2004; Schultz et al., 2013). For example, recent work 

has shown that potency is quite similar between the two when vitellogenin induction is 

considered as an endpoint (Dammann et al., 2011). A review of several assessments of 

occurrence (Table 1.1) suggests that estrone is found at environmental concentrations 

of about seven times that of estradiol (Kolpin et al., 2002; Soto et al., 2004; 

Mattheissen et al., 2006; Sarmah et al., 2006; Ferrey et al., 2008; Sellin et al., 2009; 

Chen et al., 2010; Writer et al., 2010; Barber et al., 2012; Alvarez et al., 2013). 

Estrone is a natural metabolite of estradiol, and is excreted by animals and humans 

(Ying et al., 2002). In addition, estradiol can undergo oxidative conversion to estrone 

in the environment (Fig. 1.4) (Writer, et al., 2012; Mashtare et al., 2013). Writer et al. 

(2012) found that despite attenuation of estradiol after being released into a stream 

from a point source, biotransformation to estrone can prolong the downstream impacts 

of the chemical. Recent work has also discovered that urine associated with livestock 

may increase the leaching ability of estrogens in soil and thereby increase their 

propensity for migration into freshwaters (Lucas and Jones, 2009). Reviews of 

environmental surveys by Panter et al. (1998) and Dammann et al. (2011) determined 

that environmental concentrations ranged from about 10 ng estrone/L to 100 ng 

estrone/L (Shore et al., 1993; Environment Agency, 1996; Kolpin et al., 2002; Wang 

et al., 2008; Thorpe et al., 2008; Writer et al., 2010). Environmental concentrations 

vary both spatially and temporally (Martinovic-Weigelt et al., 2013) and are affected 

by seasons and flow rates (Kolpin et al., 2004). For this reason it is important to 
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consider the possibility of ecological traps: in this case, point source releases that 

attract organisms (Kristan, 2003). Effluent sources, where pollutant concentration is 

highest, may attract fishes due to heat and oxygen gradients (Spigarelli et al., 1982).  

 

 

Figure 1.4. Oxidation of estradiol to estrone. 

 
Table 1.1. Occurrence of estradiol and estrone as reported by seven recent studies. The 
values indicated in the table are the highest environmental concentrations observed 
within each study in which both estrone and estradiol were detected. 
 

 

 
The Toxicology of Climate Change 

 Global warming is occurring at an alarming rate, and estimations predict that 

this trajectory will persist (Murdoch et al., 2000; Adrian et al., 2009). Based on a 

Study& Source& Estradiol&(ng/L)& Estrone&(ng/L)& Ra7o&(E1/E2)&
Barber&et&al.,&2012& Forested&Lake& 0.1& 1.5& 15.0&
Writer&et&al.,&2010& Forested&Lake& 0.4& 1.1& 2.8&

MPCA,&2008& Residen?al&Lake& 0.4& 1.1& 2.8&
Kolpin&et&al.,&2002& Suscep?ble&Streams& 51.0& 112.0& 2.2&
Sellin&et&al.,&2009& Wastewater&Effluent& 14.5& 22.9& 1.6&
Soto&et&al.,&2004& Beef&CaLle&Effluent& 3.2& 8.3& 2.6&

MaLhiessen&et&al.,&2006& Dairy&CaLle&Effluent& 0.5& 9.3& 18.6&
Sarmah&et&al.,&2006& Dairy&CaLle&Effluent& 331.0& 3057.0& 9.2&
Chen&et&al.,&2010& Swine/CaLle/Chicken&Effluent& 46.5& 398.0& 8.6&
Alvarez&et&al.,&2013& Swine&Effluent& 59.2& 298.0& 5.0&

Average& 50.7& 390.9& 6.8&
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report by Oreskes (2004), all queried scientists agreed that climate change is 

happening, with 97% attributing the effects to anthropogenic influence (AAAS, 2014). 

Since the end of the last ice age (the Pleistocene Epoch), about 11,700 years ago 

(Andersen and Borns, 1994), and the beginning of our current epoch (the Holocene), 

the average global temperature has increased by about 5°C. In the past millennium, 

however, average global temperature has increased by approximately 0.8°C (AAAS, 

2014). This is an 18-fold increase in warming rate. Climate change-induced physical, 

chemical and biological alterations threaten the integrity of aquatic ecosystems (Tonn, 

1990; DeStasio et al., 1996; Justic et al., 1996; Murdoch et al., 2000; Jackson and 

Mandrack, 2002; Poff et al., 2002; Ficke et al., 2007; Williamson et al., 2008; Adrian 

et al., 2009; Whitehead et al., 2009; Jeppesen et al., 2010; Taner et al., 2011; Trolle et 

al., 2011). Changes in surface water temperature (Williamson et al., 2008; Adrian et 

al., 2009), salinity (Schlenk and Lavado, 2011; Cañedo-Argüelles, 2013), pH 

(Brander, 2007; Jackson et al., 2001), nutrient profile (Schindler, 2006; Jeppesen et al., 

2010), thermal stratification in lakes (Murdoch et al., 2000; Taner et al., 2011; Trolle 

et al., 2011), and dissolved gases (Justic et al., 1996; Noyes et al., 2009) threaten to 

alter food web interactions and physiological function of individuals in aquatic 

ecosystems, especially those species occupying what is already the edge of their 

physical and chemical tolerances (Johnston and Dunn, 1987; Jackson and Mandrack, 

2002; Winder and Schindler, 2004; Noyes et al., 2009). These alterations associated 

with climate change may serve as a modulator of the toxicological fate of 

anthropogenic pollutants (Schiedek et al., 2007; Noyes et al., 2009; Holmstrup et al., 
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2010). Increases in severe rain events and changes in physiochemical water 

parameters may alter the concentrations and bioavailability of organic pollutants, such 

as endocrine-disrupting estrogens (Schwarzenbach et al., 2003; Matthiessen et al., 

2006; Noyes et al., 2009). 

The average global surface water temperature is expected to rise by 1.5°C to 

5.8°C by the year 2100 (Houghton et al., 2001). Furthermore, this projected increase is 

expected to be more dramatic in the United States (Wigley, 1999; Poff et al., 2002). 

This change bears the risk of damaging sensitive ecosystems, especially those with 

species occupying the extremes of their thermal tolerance (Tonn, 1990; Walther et al., 

2002; Rijnsdorp et al., 2009). If species are lost, complex food web interactions may 

be disrupted, resulting in a domino effect of perturbations that may ultimately result in 

a loss of organismal diversity and shifts in species niche occupation (Winder and 

Schindler, 2004; Mooij et al., 2005; Taner et al., 2011). Depending on the severity of 

the temperature change, metabolic changes in ectothermic organisms, such as 

macroinvertebrates (Schiedek et al., 2007) and fish (Roberts, 2012), and temperature-

modulated changes in reproductive function (Smith, 1978) could conceivably pose a 

threat to population stability. Increased temperature has the effect of increasing 

metabolic rate and enzyme activity in fish (Evans and Claiborne, 2006). Such effects 

may increase overall pathological biosynthesis of estrogen-induced vitellogenin in 

male fish (Hoar and Randall). An increase in surface water temperature is also 

accompanied by a reduction in oxygen solubility, and therefore a reduction in 

dissolved oxygen necessary for fish respiration (Hughes, 1965; Roberts, 2012). This 
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reduction in dissolved oxygen necessitates physiological (Blewett et al., 2012) and 

anatomical changes (Evans, 1987) to increase gill respiration efficiency. An increase 

in respiratory rate and surface area of the lipophilic gill tissues, the proposed site of 

uptake for a host of xenobiotic chemicals (Evans, 1987; Blewett et al., 2012), is likely 

to increase the uptake of estrogens and thereby enhance their biological consequences. 

Alternatively, increases in water temperature may increase the degradation rate of 

estrogens (Raman et al., 2001; Chen et al., 2010), reducing aqueous concentrations 

and potentially reducing the bioavailability of estrone to the fish.  

Food web alterations may have additional implications in contaminant toxicity 

as well. Increased nutrient intake has the potential to enhance reproductive activity in 

Pimephales promelas (Smith, 1978). For decades, the aquaculture industry has 

recognized the importance of adequate diet to facilitate reproduction in fish (Luquet 

and Watanabe, 1986; Izquierdo et al., 2001). Vitellogenesis involves the synthesis of 

egg-yolk lipoprotein and is therefore an energy-intensive process (Hoar and Randall, 

1988; Babin et al., 2007). By increasing nutrient intake and subsequently providing 

greater availability of the necessary biological macromolecules for vitellogenesis, it is 

feasible that pathogenic vitellogenin plasma concentrations could be enhanced. 

Conversely, it is possible that climate change disturbances in food webs may lead to 

diet reduction (Jackson and Mandrak, 2002; Brander, 2007) and stress induction 

(Andersen et al., 1991). The stress hormone, cortisol, is known to enhance the rate of 

vitellogenesis in female Asian stinging catfish (Heteropneustes fossilis) (Sundararaj et 

al., 1982).  
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 Hydrological alterations associated with climate change are predicted to alter 

the salinity of aquatic systems (Moore et al., 1997). An increase in the number and 

intensity of severe rain events (Poff et al., 2002; Noyes et al., 2009; Jeppesen et al., 

2010; Hooper et al., 2013; AAAS, 2014), rising sea levels that result in saltwater 

intrusion into freshwater systems (Murdoch et al., 2000), and increasing periods of 

drought (Williamson et al., 2008; Whitehead et al., 2009; Taner, 2011) are predicted to 

occur with climate change, and will contribute to freshwater hypersalinization due to 

increased evaporation (Justic et al., 1996; Jeppesen et al., 2010; Hooper et al., 2013). 

Urban areas of the United States have long reported incidence of high chloride 

concentrations relating to road salt usage (Oliver et al., 1974; Benbow and Merritt, 

2005; Jackson and Jobbagy, 2005; Kaushal et al., 2005; Siegel, 2007; Kelly et al., 

2010; Cañedo-Argüelles, 2013; Corsi et al., 2015). Data trends show that 

concentrations are increasing over time, and regularly violate the United States 

Environmental Protection Agency chronic water quality criteria concentration of 230 

ppm chloride (Oliver et al., 1974; Corsi et al., 2015). Chloride concentrations in 

excess of 800 ppm have been reported in New Hampshire during times of low water 

flow in the summer and fall, while natural background concentrations fluctuate 

between 1 and 10 ppm in unaffected waterways (New Hampshire Department of 

Environmental Sciences, 2013). Chloride concentrations in metropolitan areas of the 

northeastern United States are some of the highest during the winter months, when 

road salt application is at its peak. In this region, concentrations of up to 4,629 ppm 

chloride have been reported (Kaushal et al., 2005). Increases in chloride 



www.manaraa.com

!
!

14 

concentrations can cause hypoxic conditions through reduction in oxygen solubility 

(Roberts, 2012) and incomplete vertical mixing of surface waters (meromixis), which 

can result in benthic oxygen depletion (Canada Council of Ministers of the 

Environment, 2011). 

 The toxic effect of hypersalinization on freshwater organisms has been 

extensively documented (Adelman et al., 1976; Evans, 1987; Peterson and Meador, 

1994; Benbow and Merritt, 2005; Canada Council of Ministers of the Environment, 

2011; Elphick et al., 2011; Cañedo-Argüelles et al., 2013). The chronic chloride 

toxicity threshold for Pimephales promelas (252 ppm) is relatively low when 

compared with other freshwater organisms (Siegel, 2007). Unnaturally high chloride 

concentrations can interfere with the sodium pump in fish gills, and ultimately cause 

mortality due to massive osmoregulatory failure (Adelman et al., 1976; Evans et al., 

1999). In addition to direct mortality, increases in chloride concentrations have the 

potential to increase the potency of concurrent xenobiotic chemicals by increasing 

receptor sensitivity (Schlenk and Lavado, 2011). Also, by reducing oxygen solubility, 

and necessitating respiratory changes, they may increase uptake of estrogens at the 

gills (Blewett et al., 2012). Lastly, bioavailability may be increased by chloride 

reducing solubility of estrone (30 mg/L at 25°C) in water. This is known as the 

“salting out” effect (Schwarzenbach et al., 2003), whereby water molecules bind 

strongly to salts, making them unavailable to dissolve organic compounds, and 

possibly increasing the degradation half-life of the compound (Song and Brown, 1998; 

Noyes et al., 2009). 
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 Historical data (Stahl et al., 2013) and models of freshwater systems (Moore et 

al., 1997; Jeppesen et al., 2010) frequently indicate increasing prevalence of hypoxic 

conditions as a result of climate change, due to increased surface water temperature 

(Murdoch et al., 2000), prolonged thermal stratification (Taner et al., 2011) and 

increased nutrient runoff (Adrian et al., 2009) in densely populated and agricultural 

areas. Incidentally, these are the areas most commonly associated with the discharge 

of contaminants (Soto et al., 2004; Matthiessen et al. 2006; Chen et al. 2010; Barber et 

al., 2011; Lee et al., 2011; Martinovic-Weigelt et al. 2013). Hypoxic conditions have 

been shown to suppress reproductive function in Cyprinus carpio (Wu et al., 2003), 

Micropogonias undulatus (Thomas et al., 2006), and Fundulus grandis (Landry et al., 

2007), and increase estrogen receptor transcriptional activity synergistically in 

combination with estradiol (Yi et al., 2009). As with hypersalinization, hypoxia has 

been implicated in an increase of uptake (Blewett et al., 2012) and toxicity of certain 

chemicals in fish (Ficke et al., 2007). The affinity for organismal congregation near 

effluent discharge (Spigarelli et al., 1982) may place organisms at additional risk (see 

“ecological traps” later in this section). Behavioral changes in an oxygen gradient are, 

of course, not limited to spatial migration. Respiratory movements are increased in 

low oxygen conditions in order to maintain homeostatic balance in fishes (Gee et al., 

1978; Wares and Igram, 1979). The lipophilic gill tissues of teleost fish are thought to 

be a primary site for uptake of steroidal compounds (Blewett et al., 2012). As has been 

suggested previously, the increased rate of opercular movement, resulting from 

hypoxic conditions (Gee et al., 1978; Wares and Igram, 1979), may result in an 
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increase in volume of chemical exposure, and a subsequent increase in uptake of 

steroidal compounds such as estrogens, thereby exacerbating their effects. In a study 

of the effect of hypoxia on responses to a mixture of estrogenic chemicals, however, 

no effect was found (Brian et al., 2009). The interaction between dissolved oxygen 

and individual estrogenic compounds has, to our knowledge, not been measured. 

 
The Need for a Dynamic Approach to Toxicity Testing 

Toxicity testing is often over-simplified. Culture guidelines set forth by 

regulatory agencies have generally recommended that water quality parameters be 

kept constant (Table 1.2; Denny, 1987; U.S. Environmental Protection Agency, 1998). 

There are benefits to consistent methodology as outlined in these protocols. They 

allow information from various studies to be more readily compared, and provide a 

framework for aquatic toxicologists to perform exposures that contribute to the vast 

ecotoxicological database of knowledge. There are, however, serious limitations to 

this type of testing. Fish, in a very Darwinian sense, are not genetically identical. 

Variations in individual biology between organisms within treatments will inevitably 

lead to variation in dose-response. Other factors, including seasonal fluctuations 

(Denton and Yousef, 1975; Smith, 1978) and down regulation of estrogen receptors 

via differing concentrations previously circulating androgens (Poulin et al., 1989), 

further emphasize the limitations of standardized exposures with the hope of 

comparing them to each other, or, perish the thought, using the results to create 

environmental standards that will be applied to a broad geographical or climatic range. 

At the heart of this type of toxicity testing is the desire to identify sources of negative 
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effects so that the information can be used to prevent damage to sensitive ecosystems. 

To generate environmentally relevant results from toxicity tests, the researcher must 

identify what environmentally relevant actually means, and the answer is complicated. 

To an organism that inhabits a broad ecological niche, such as Pimephales promelas 

environmentally relevant means a range of temperatures, pH, salinities, and so on. If 

toxicity testing is performed under a variety of such parameters, the results can then be 

applied to localized situations. 

The following work is not an attempt to provide a complete summary of the 

toxicity of estrone by testing its biological effects under all possible conditions. While 

such an undertaking would certainly be noble, it is beyond the scope of this thesis. The 

purpose of the following research can be summarized with a single question: Does 

environmental variation impact estrone’s capacity to disrupt endocrine function in 

male Pimephales promelas? If so, the results should be used as a starting point to 

justify a more complex series of toxicity tests. These tests would involve exposing 

organisms under a range of various environmental conditions, to generate results that 

could be used in creating more effective regulatory standards for a variety of 

microhabitats. 
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Table 1.2. The recommended water quality parameters for Pimephales promelas 
reproductive tests (U.S. Environmental Protection Agency, 1998).  
 

Water&Characteristic& Recommended&Range&
Temperature)(°C)) 24.0)2)26.0)

Dissolved)Oxygen)(mg/L)) >4.9)

pH) 6.5)2)9.0)

Alkalinity)(mg/L)as)calcium)carbonate)) >20)

Total)Organic)Carbon)(mg/L)) ≤5)

Un2ionized)Ammonia)(µg/L)) <35)
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Chapter II 
 
 

MODULATION OF ESTRONE EXPOSURE EFFECTS MEDIATED THROUGH 
DIETARY AND TEMPERATURE REGIMENS IN MALE FATHEAD MINNOWS, 

PIMEPHALES PROMELAS 
 
 

INTRODUCTION 
 
 

 In the past 100 years, the rate of average global temperature rise has increased 

by approximately 20-fold (AAAS, 2014), and is likely to continue following this trend 

(Murdoch et al., 2000; Adrian et al., 2009). This warming is predicted to co-occur with 

environmental consequences, including increased severe rainfall events (Poff et al., 

2002; Noyes et al., 2009; Jeppesen et al., 2010; Hooper et al., 2013; AAAS, 2014), 

oceanic acidification (Noyes et al., 2009), hypersalinization of freshwater systems 

(Justic et al., 1996; Jeppesen et al., 2010; Hooper et al., 2013), and surface water 

temperature increases (Williamson et al., 2008; Adrian et al., 2009), all of which have 

an effect on aquatic ecosystems (Johnston and Dunn, 1987; Noyes et al., 2009; 

Whitehead et al., 2009; Stahl et al., 2013). The average global surface water 

temperature is expected to rise by 1.5°C to 5.8°C by 2100 (Houghton et al., 2001) and 

the increase may be more dramatic in the United States (Wigley, 1999; Poff et al., 

2002). This distortion of the environment can ultimately lead to the loss of  
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populations, especially in those species occupying the thermal extremes of their select 

niche (Tonn, 1990; Walther et al., 2002; Rijnsdorp et al., 2009). As a result, food web 

disruption can occur, resulting in a further loss of organismal diversity and shifts in 

species occupation (Winder and Schindler et al., 2004; Mooij et al., 2005; Taner et al., 

2011).  

 Aquatic ecosystems also face the burden of anthropogenic pollution. In 

addition to traditional sources, such as eutrophication due to human activity (cultural 

eutrophication) (Correll, 1998; Schindler, 2006; Smith et al., 2006; Jeppesen et al., 

2010) and metal pollution (Kock et al., 1996; Khan et al., 2008), another threat faces 

aquatic organisms. Industrialization, agriculture and urbanization have lead to an 

increase in environmental contaminants of emerging concern (Colborn et al., 1993; 

Barber et al., 2011). These include pesticides, personal care products, and hormones 

that eventually end up in waterways through wastewater effluent and non-point runoff 

(Kolpin et al., 2002; Soto et al., 2004; Matthiessen et al. 2006; Chen et al. 2010; 

Barber et al., 2011; Lee et al., 2011; Martinovic-Weigelt et al., 2013). A subset of 

these chemicals, known as endocrine disruptors, have sublethal effects on the 

organism that can cause physiological abnormalities in the endocrine system, such as 

reproductive dysfunction (Colborn et al., 1993; Jobling et al., 1998; Schoenfuss et al., 

2002; Vajda et al., 2008, Schultz et al., 2013). Estrogens are a widespread class of 

endocrine disruptors that act upon the reproductive system of male fish (Schultz et al., 

2013). Introduction of 17α-ethinyl estradiol, a synthetic estrogen found in female birth 

control and often found in the environment (Kolpin et al., 2002), resulted in 
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Pimephales promelas population collapse in a lake in western Ontario, Canada (Kidd 

et al., 2007). Environmental factors such as heavy and sporadic rainfall events 

associated with climate change may increase the rate of estrogenic introduction into 

aquatic systems (Noyes et al., 2009), while hypersalinization increases their 

bioavailability due to the “salting out” effect whereby the solubility of organic 

compounds is decreased by increased aqueous salinity (Schwarzenbach et al., 2003). 

In combination with the aforementioned effects, increased metabolism and 

temperature-modulated changes in reproductive function (Roberts, 2012; Smith, 1978) 

could perceivably pose a serious threat to fish populations.  

 The goal of this experiment was to test whether or not changes in temperature 

and nutritional regimen would influence the observed biological effects of estrone, a 

common estrogen found in the environment, on Pimephales promelas, a common 

North American baitfish, and an integral part of the freshwater food web. It was 

predicted that (1) higher temperatures would enhance the biological effects of estrone, 

(2) an unrestricted diet would enhance the biological effects of estrone, and that (3) the 

combination of (1) and (2) would create a “worst case scenario” in which the 

measured pathological effects of estrone are additively maximized. Spawning of 

Pimephales promelas begins when temperatures reach approximately 15.6°C and 

continues until the fall, until temperatures drop below 15.6°C to 18.4°C (Prather, 

1957; Duda, 1989; Danylchuk and Tonn, 2001). Increased temperature has the effect 

of increasing metabolic rate and enzyme activity (Evans and Claiborne, 2006). It was 

predicted that, for this reason, overall biosynthesis of estrone-induced vitellogenin, an 
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egg-yolk precursor protein produced in male fish exposed to estrogenic chemicals 

(Hoar and Randall, 1988). While estrone is normally only produced in female 

oviparous fish to accommodate oogenesis, it is pathologically produced in male fish 

exposed to exogenous estrogenic chemicals (Sumpter and Jobling, 1995; Ankley et al., 

2001; Matozzo et al., 2008; Bartell and Schoenfuss, 2012). Temperature increase is 

also accompanied by a reduction in oxygen solubility, and therefore a reduction in 

dissolved oxygen (Roberts, 2012). A reduction in dissolved oxygen necessitates 

physiological (Blewett et al., 2012) and anatomical changes (Evans, 1987) related to 

gill respiration in fish.  An increase in respiratory rate and surface area of the 

lipophilic gill tissues (Blewett et al., 2012), the proposed site of uptake for a host of 

xenobiotic chemicals, is likely to increase uptake of estrone and thereby enhance its 

biological effects. Alternatively, increases in water temperature may increase the 

degradation rate of estrone (Raman et al., 2001), reducing aqueous concentrations and 

exposure. This, in turn, may reduce the overall effect on the organism. Increased 

nutrient intake is projected to facilitate the energy intensive biosynthesis associated 

with vitellogenesis (Hoar and Randall, 1988; Babin et al., 2007). Furthermore, if 

excess food is present, it may serve as a “sink” for which estrogens can bind and be 

removed from the aqueous medium occupied by fish. This may reduce exposure to the 

chemical. If a subsequent reduction in food availability occurs, necessitating 

consumption of the previously extraneous nutriment, exposure may be increased. 

Restricted nutrition may also increase plasma concentrations of the stress hormone, 

cortisol (Andersen et al., 1991), which is known to enhance the rate of vitellogenesis 
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in fish (Sundararaj et al., 1982). It is worth noting that increased temperature may also 

increase plasma cortisol concentrations in fish (Ryan, 1995).  

Ideally, the results from this experiment will aid in the interpretation of 

biological effects observed in the laboratory and in the environment. This may, in turn, 

facilitate a deeper understanding of these effects in the context of non-static physical 

water parameters associated with a dynamic climate. 

 
MATERIALS AND METHODS 

 
 

Ethics Statement 

 This study was approved by the St. Cloud State University Institutional Animal 

Care and Use Committee. 

 
Experimental Design 

Replicate 21-day exposures were conducted in the Aquatic Toxicology Laboratory 

at St. Cloud State University (St. Cloud, MN). The first exposure was conducted from 

October 5th, 2012 to October 26th, 2012 and the second exposure was conducted from 

November 27th, 2012 to December 18th, 2012. Previously published flow-through 

exposure protocols (Schoenfuss et al., 2008) were modified to accommodate a 2x3x2 

(temperature, estrone, and feeding regime) experimental design. Fish were kept on a 

16 h light/8 h dark cycle. Well water was diverted into one of two head tanks, one of 

which was maintained at 18°C, the other at 26°C. The temperature-controlled head 

tanks were fed into mixing tanks, where they were combined with a concentrated 

stock to create either an ethanol control, a low estrone treatment (15 ng/L nominal) or 
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a high estrone treatment (100 ng/L). Estrone treatments were established in a 

treatment-specific common mixing tank, prior to being split into the corresponding 

aquaria, ensuring equal concentrations in each aquarium. Furthermore, each of the 

resulting groups was fed either a restricted (0.75% body weight/day) or an ad libitum 

(3% body weight/day) diet. The resulting treatments totaled twelve, with mature male 

fathead minnows (6 months in age) divided into two tanks of ten individuals per 

treatment. On the 22nd day, all fish were sacrificed in accordance with St Cloud State 

University Institutional Animal Care and Use Committee (IACUC) approved 

protocols. 

Exposure Chemicals 

Estrone (Sigma-Aldrich, St. Louis, MO) exposure solutions were prepared daily 

from aliquots of an estrone solution in 100% ethanol. Control treatments received 2 

mL of 100% ethanol to rule out any effect from the ethanol carrier. Aliquots were 

stored at 4°C until use. 

Each day, beginning on the first day of exposure, one treatment-specific aliquot 

was mixed with 10 L of ground water from a dedicated well in an amber glass bottle. 

Stir bars and plates were assigned to each amber glass bottle containing treatment 

solution. This method insured continuous agitation to avoid settling of the chemicals. 

Stainless steel tubes were used to draw the solution into a stainless steel mixing 

chamber via a Cole-Palmer Masterflex 7523-40 peristaltic pump at a nominal rate of 7 

mL/min. Ground water from the same dedicated well was gravity-fed into the mixing 

chamber at a rate of 200 mL/min to achieve the final treatment concentration. Mixture 
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was achieved by allowing the combined solution to fall over two barrier-walls within 

the mixing tank. The final solution was delivered directly to four aquaria via tubing 

extending from the bottom of the mixing tank. Water exchange rate was 

approximately 7 exchanges/aquarium/day. 

 
Exposure Organisms 

Adult male fathead minnows were obtained exclusively from a laboratory supplier 

(US EPA Cincinnati). Mortality was checked on a daily basis. Fish were kept at one of 

two constant water temperatures (18°C and 26°C). Frozen brine shrimp (Artemia spp.) 

and frozen blood worms (Glycera spp.) were obtained separately (Brine Shrimp 

Direct, Ogden, UT) and mixed. Food portions of 0.75% fish body weight were 

calculated assuming the average weight of a mature male fathead minnow to be 

approximately 3.3 g. Restricted fish were fed one 0.75% body weight aliquot per day 

and ad libitum fish were fed four aliquots (3% body weight). All fish maintenance was 

carried out in accordance with St. Cloud State University’s IACUC policies. 

 
Water Quality Analysis 

Water temperature was recorded every 10 minutes using a HOBO Data Logger 

(Onset Computer Corporation, Bourne, MA). Separately, additional daily water 

temperatures were taken as a failsafe, along with pH (General PH-501, General Tools 

& Instruments, New York, NY) and conductivity measurement (General CO-502, 

General Tools & Instruments, New York, NY). Total water hardness, free chlorine, 

total chlorine and alkalinity were assessed periodically (~every 3 days) using 
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AquaChek 5-in-1 Water Quality Test Strips (Hach Company, Loveland, CO). 

 
Water Chemistry Analysis  

At exposure days 5, 10, 15, 20, and on the day of dissection, two 120 mL water 

samples were taken from each treatment. Water samples were stored at -20°C for 24 

hours, then transferred to -80°C for storage until analysis as described in Shappell et 

al. 2010. 

 
Plasma Vitellogenin Analysis 

 Blood was obtained from the severed caudal vasculature using a heparinized 

capillary tube after fish were anesthetized in 0.1% MS-222 (Argent Laboratories, 

Redmond, WA). Plasma was obtained following blood centrifugation at 8050 x g for 8 

min at 4°C and stored at -80°C prior to analysis. Plasma vitellogenin concentrations 

(µg/L) were quantified via competitive antibody-capture ELISA using and 8 point 

serial dilution standard (4.8 µg/mL to 0.0375 µg/mL). Detailed methods of the assay 

are described in Shappell et al. (2010). 

 
Plasma Cortisol Analysis 

  In addition to being evaluated for vitellogenin concentrations, plasma samples 

were also tested for cortisol concentration (µg/L) using a cortisol enzyme 

immunoassay (EIA) (Cortisol Express EIA Kit # 500370, Cayman Chemical 

Company, Ann Arbor, MI). An eight-point standard for the assay was produced via 

serial dilution of a 50 ng/mL bulk standard. EIA buffer was used to dilute the standard 

by 50%, seven times, generating a range of concentrations from 5 ng/mL to 39.1 
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pg/mL. The plate wells were pre-coated with goat anti-mouse immunoglobulin G 

antibody. Samples of 5 µL of fish plasma were diluted to 1:40 and 1:80, then allowed 

to incubate for 2 hours at room temperature in the coated wells with a competing 

cortisol-acetylcholinesterase (AChE) conjugate tracer and mouse monoclonal 

antibody. Following this incubation, the plates were washed using a Stat Fax 2600 

Microplate Washer (Awareness Technology, Palm City, FL). Ellman’s Reagent, 

containing the substrate for AChE, was then added at a rate of 200 µL/well and 

incubated in the dark for 60 minutes 

(<https://www.caymanchem.com/pdfs/500370.pdf>). Absorbance values were 

measured on a Multiskan EX spectrophotometer (Thermo Scientific, Waltham, MA) 

and interpreted using the included Ascent Software.  

 
Blood Glucose Analysis 

Using 1 µL of blood, a TRUEbalance Blood Glucose Monitor (Moore 

Medical, Farmington, CT) was used to quantify blood glucose concentration (mg/dL). 

 
Hematocrit Analysis 

Blood was taken via the caudal artery using 75mm heparinized capillary tubes 

(ClearCRIT Plastic Capillary Tubes, Separation Technology Inc., Sanford, FL). 

Capillary tubes were sealed (Critoseal, Oxford Labware, St. Louis, MO) and placed in 

a microhematocrit centrifuge (HERMLE Z200A, Labnet International Inc., 

Woodbridge, NJ) for 3 minutes at 968 x g. Hematocrit was measured using a Spiracrit 

Micro-Hematocrit Tube Reader (Clay-Adams Inc., New York, NY). 
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Organosomatic Indices 

Prior to dissection, individual fish were weighed (0.01 g precision, Taylor 

Stainless Steel Food Scale, Taylor Precision Products, Oak Brook, IL) and measured 

for length to calculate body condition factor (BCF = body weight/total length3) 

(Fulton, 1904). To calculate hepatosomatic index (HSI = liver weight/whole body 

weight x 100) and gonadosomatic index (GSI = gonad weight/whole body weight x 

100), liver and gonads were excised and immediately weighed (0.001 g precision, 

Mettler Toledo AG245, Columbus, OH).   

 
Secondary Sex Characteristics 

Prior to dissection, an assessment of the male sexual characteristics of 

individual fish was performed. Tubercles, dorsal pad and banded coloration were 

given a separate rating of 1, 2 or 3 based on prominence (1 being the least prominent, 

3 being the most prominent) (Smith, 1978). The three values were added together for 

as a method for comparing morphological sexual maturity between treatments.  

 
Histopathology 

Liver and gonads were excised from fish and placed in histological cassettes 

(Tissue-Loc Histoscreen Cassettes, Thermo Scientific, Kalamazoo, MI) in 10% 

buffered formalin for at least 24 hours. Dehydration and tissue preparation was 

achieved following previously prescribed procedures (Carson, 1997). Tissues were 

embedded in paraffin. Small samples (~1 mm diameter) of liver and gonad were 

sectioned at approximately 5 µm (Olympus Cut 4055 Microtome, Olympus America 
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Inc., Center Valley, PA). Tissues were stained using a standard haematoxylin and 

eosin counter stain (Gabe, 1976; Carson, 1997).  

Liver tissues were graded on a scale of 1 to 4 based on cellular vacuolization. A 

grade of 1 indicates that no vacuoles are visible under a 40x magnification, a grade of 

2 indicates that less than 25% of the visible tissue is occupied by vacuoles, a grade of 

3 indicates that 25-50% of the visible tissue is occupied by vacuoles, and a grade of 4 

indicates that the majority of the visible tissue consists of vacuoles.  

 
Statistical Analysis 

A multiple analysis of variance was used to test for interactions between variables. 

Tukey’s post-tests were utilized to determine differences between means. 

 
RESULTS 

 
 
Chemical Data and Survival Rates 

 Estrone concentrations were higher in experiment 2 (low treatment: 14±2.1 

ng/L, high treatment: 135±20.7 ng/L) than in experiment 1 (low treatment: 9±1.6 

ng/L, high treatment: 78±22.9 ng/L) (Table 2.1). In both experiments, survival was 

higher in the 18°C treatments (100% overall survival in experiment 1 and 99% overall 

survival in experiment 2) than in the 26°C treatments (87% overall survival in 

experiment 1 and 83% overall survival in experiment 2) (Table 2.2).  
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Table 2.1. Average aqueous estrone concentrations in flow-through exposures; 
chemical analysis methods are consistent with those described in Shappell et al. 2010; 
samples were taken on days 5, 10, 15 and 20 of the exposure. 
 

 

 
Table 2.2: Percent survival and number of survivors (survived full exposure/total fish 
at beginning of experiment) within individual treatments in experiment 1 and 
experiment 2. 
 

 
 
 
Physiological Endpoints 

Estrone had the most significant effect (p<0.0001) on mean plasma 

vitellogenin concentration in both experiments (Table 2.3, 2.4). In both experiments, 

low estrone-treated fish (9 ng estrone/L in experiment 1, 14 ng estrone/L in 

Estrone(Treatment(
(Nominal)(

(

Average(Measured(Estrone(
Concentra9on(

(

Experiment(1(
(
(

Control' 0'ng/L'

15'ng/L' 9±1.6'ng/L'

100'ng/L' 78±22.9'ng/L'

Experiment(2(
(
(

Control' 0'ng/L'

15'ng/L' 14±2.1'ng/L'

100'ng/L' 135±20.7'ng/L'

18°C,&Low&Feed& 18°C,&High&Feed& 26°C,&Low&Feed& 26°C,&High&Feed&

Experiment&1&
EtOH& 100%$(20/20)$ 100%$(21/21)$ 76%$(16/21)$ 95%$(19/20)$

9&ng&estrone/L& 100%$(18/18)*$ 100%$(25/25)$ 74%$(17/23)$ 100%$(19/19)$

78&ng&estrone/L& 100%$(20/20)$ 100%$(22/22)$ 90%$(18/20)$ 90%$(19/21)$
*$accidental$female$in$tank$found$dead$on$day$5$of$exposure$C$not$counted$towards$mortality$

18°C,&Low&Feed& 18°C,&High&Feed& 26°C,&Low&Feed& 26°C,&High&Feed&

Experiment&2&
EtOH& 100%$(20/20)$ 100%$(23/23)$ 95%$(21/22)$ 60%$(12/20)$

14&ng&estrone/L& 100%$(19/19)$ 95%$(19/20)$ 89%$(17/19)$ 88%$(15/17)$

135&ng&estrone/L& 100%$(20/20)$ 100%$(20/20)$ 80%$(12/15)$ 84%$(16/19)$
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experiment 2) did not exhibit plasma vitellogenin concentrations that were 

significantly (p<0.05) elevated over the control (Fig. 2.1). In contrast to experiment 2, 

temperature had a significant effect on mean plasma vitellogenin concentrations in 

experiment 1. Additionally, there was significant interaction between variables in 

experiment 1 (Table 2.3). Fish exposed to a high estrone (78 ng estrone/L) 

concentration at 18°C, and fed a restricted diet, had a mean plasma vitellogenin 

concentration that was significantly higher than all other treatments, while fish 

exposed to the same estrone concentration at 26°C, and fed a restricted diet, had a 

mean plasma vitellogenin concentration that was not significantly elevated over 

control (Fig. 2.1). 

 

 

Figure 2.1. Plasma vitellogenin concentrations of male P. promelas after 21 days of 
exposure at 18°C and 26°C, and fed either a restricted (0.75% body weight) or an ad 
libitum (3% body weight) diet; letters above standard deviation bars indicate 
significantly different means at p<0.05; Multiple Analysis of Variance; Tukey post-
test to compare means. 
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2.2). In experiment 1, hematocrit is elevated in the 18°C estrone-treated (both 9 ng/L 

and 78 ng/L) fish when compared with 26°C estrone-treated fish (Fig. 2.2a). In both 

experiments, fish exposed to high estrone at 18°C, fed ad libitum, had the highest 

mean hematocrit. Mean blood glucose concentrations were not significantly different 

in experiment 1 (Fig. 2.3a), however temperature significantly affected the mean in 

experiment 2 (Table 2.4). In experiment 2, mean blood glucose was always higher in 

fish being fed an ad libitum diet, when compared with their restricted diet counterpart 

treatment. This was seen to a higher degree in the 18°C treatments (Fig. 2.3b). 

 

 

Figure 2.2. Hematocrit of male P. promelas after 21 days of exposure at 18°C and 
26°C, and fed either a restricted (0.75% body weight) or an ad libitum (3% body 
weight) diet; letters above standard deviation bars indicate significantly different 
means at p<0.05; Multiple Analysis of Variance; Tukey post-test to compare means. 
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Figure 2.3. Blood glucose concentrations of male P. promelas after 21 days of 
exposure at 18°C and 26°C, and fed either a restricted (0.75% body weight) or an ad 
libitum (3% body weight) diet; no significant differences between means in 
experiment 1 (b); letters above standard deviation bars indicate significantly different 
means at p<0.05 (b); Multiple Analysis of Variance; Tukey post-test to compare 
means. 
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Figure 2.4. Body condition factor of male P. promelas after 21 days of exposure at 
18°C and 26°C, and fed either a restricted (0.75% body weight) or an ad libitum (3% 
body weight) diet; no significant differences between means in experiment 1 (b); 
letters above standard deviation bars indicate significantly different means at p<0.05 
(b); Multiple Analysis of Variance; Tukey post-test to compare means. 
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Figure 2.5. Gonadosomatic index of male P. promelas after 21 days of exposure at 
18°C and 26°C, and fed either a restricted (0.75% body weight) or an ad libitum (3% 
body weight) diet; letters above standard deviation bars indicate significantly different 
means at p<0.05; Multiple Analysis of Variance; Tukey post-test to compare means. 
 
 

 

Figure 2.6. Hepatosomatic index of male P. promelas after 21 days of exposure at 
18°C and 26°C, and fed either a restricted (0.75% body weight) or an ad libitum (3% 
body weight) diet; letters above standard deviation bars indicate significantly different 
means at p<0.05; Multiple Analysis of Variance; Tukey post-test to compare means. 
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Figure 2.7. Sum of secondary sex characteristics of male P. promelas after 21 days of 
exposure at 18°C and 26°C, and fed either a restricted (0.75% body weight) or an ad 
libitum (3% body weight) diet; no significant differences between means in 
experiment 1 (a); letters above standard deviation bars indicate significantly different 
means at p<0.05 (b); Multiple Analysis of Variance; Tukey post-test to compare 
means. 
 
 

 

Figure 2.8. Sum of secondary sex characteristics of male P. promelas after 21 days of 
exposure to estrone during experiment 1 (a) and experiment 2 (b); no significant 
differences between means in experiment 1 (a); * indicates significance at p<0.05 (b); 
bars indicate standard deviation; t-test with temperature treatments compared 
independent of estrone and feeding regime. 
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experiment (Fig. 2.10), however, when estrone treatments were examined independent 

of temperature and feeding regime, the 14 ng estrone/L treatment (experiment 2) is 

significantly higher than both the control (EtOH) and high estrone treatment (135 ng 

estrone/L) (Fig. 2.10a). Percent of mature spermatozoa was temperature-dependent in 

both experiments (Table 2.3, 2.4), however this is the extent of the similarity. When 

we examined the percentage of spermatozoa in 18°C and 26°C treatments independent 

of estrone concentration and feeding regimen, we found opposite effects between the 

two experiments. In the first experiment, the 26°C treatment exhibited a higher 

percentage of mature spermatozoa, whereas in the second experiment, the 18°C 

treatment exhibited a higher percentage of spermatozoa. 

 

 

Figure 2.9. Liver vacuolization of male P. promelas after 21 days of exposure to 
estrone during experiment 1 (a) and experiment 2 (b); no significant differences 
between means; bars indicate standard deviation; Multiple Analysis of Variance; 
Tukey post-test to compare means. 
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Figure 2.10: Liver vacuolization of male P. promelas after 21 days of exposure to 
estrone during experiment 1 (a) and experiment 2 (b); no significant differences 
between means in experiment 1 (a); letters above standard deviation bars indicate 
significantly different means at p<0.05 (b); One-Way ANOVA with estrone 
treatments compared independent of temperature and feeding regime, followed by 
Tukey post-test. 
 
 

 

Figure 2.11. Spermatozoa percentage of male P. promelas after 21 days of exposure at 
18°C and 26°C, and fed either a restricted (0.75% body weight) or an ad libitum (3% 
body weight) diet; letters above standard deviation bars indicate significantly different 
means at p<0.05; Multiple Analysis of Variance; Tukey post-test to compare means. 
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Table 2.3. A depiction of p-values associated with dependent and all combinations of 
independent variables in experiment 1. Significant values (p<0.05) are in bold. 
 

 

 
Table 2.4. A depiction of p-values associated with dependent and all combinations of 
independent variables in experiment 2. Significant values (p<0.05) are in bold. 
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DISCUSSION 
 
 

 The goal of this experiment was to determine whether temperature and diet 

play a role in modulating the observable biological responses to exogenous estrone in 

adult male fathead minnows (Pimephales promelas). It was predicted that, due to 

changes in gill ventilation and physiology (Evans, 1987; Blewett et al., 2012; Roberts, 

2012), metabolic rate (Evans and Claiborne, 2006), and increased estrogen receptor 

sensitivity (Blair et al., 2000), fish exposed to estrone at 26°C would exhibit an 

increase in severity of estrogenic effects in comparison to fish exposed at 18°C. 

Additionally, it was predicted that fish fed an ad libitum (3% body weight/day) diet 

would exhibit biological markers of estrogenic exposure more dramatically than fish 

fed a restricted diet (0.75% body weight/day). Diet adequacy would increase the 

chance of metabolic availability of biological macromolecules necessary to respond to 

estrogenic exposure, particularly with regards to egg-yolk producing vitellogenesis, a 

well established biomarker of estrogenic exposure in male fish (Sumpter and Jobling, 

1995; Ankley et al., 2001; Matozzo et al., 2008; Bartell and Schoenfuss, 2012) with a 

high energy requirement (Hoar and Randall, 1988; Babin et al., 2007). The data do not 

corroborate these predictions. Nonetheless, the metabolic and reproductive 

implications of temperature and diet are demonstrated to a high degree in this study, 

and prove to be as important as actual xenobiotic chemical concentrations when 

considering biological endpoints in exposure studies. 

 Temperature had the most significant biological effect on Pimephales 

promelas in both experiments in terms of the number of dependent variables 
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significantly impacted (Table 2.3, 2.4). Mortality is perhaps the most pressing 

endpoint affected by temperature. By facilitating more prolific microbial growth that 

may be harmful to fish (Roberts, 2012) and increasing metabolic demand (Johnston 

and Dunn, 1987; Gillooly et al., 2001), it seems a temperature increase created a 

systemic burden on the fish. In experiment 1, 16 fish died in the 26°C treatments 

throughout the duration of the exposure (21 days), while all fish survived the exposure 

in the 18°C treatments. In experiment 2, 19 fish died in the 26°C treatments and only 

one died in the 18°C treatments. This has profound implications in the context of 

climate change-induced increases in surface water temperature (Pörtner and Knust, 

2007; Noyes et al., 2009).  

 Estrone had no significant effect in elevating plasma vitellogenin 

concentrations in fish exposed to aqueous concentrations of 9 ng estrone/L and 14 ng 

estrone/L (Fig. 2.1) at any temperature or feeding regimen. Concentrations of 78 ng 

estrone/L and 135 ng estrone/L did, however elicit a response that resulted in 

significant elevation in plasma vitellogenin concentrations over the control (Fig. 2.1). 

Interestingly, plasma vitellogenin concentrations were significantly lower in the high 

estrone treatment in the second experiment (135 ng estrone/L) than in the first 

experiment (78 ng estrone/L). This may be due to tapering dose response curves to 

estrogenic chemicals have been reported previously (Wester et al., 2003; Brian et al., 

2008). Another factor could be hepatic and renal toxicity similar to that which has 

been observed in male summer flounder (Paralichthys dentatus) injected with 

estradiol (Folmar et al., 2001). The high estrone treatment in experiment 2 had the 
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greatest mortality rate of any of the estrone treatments in either exposure (15%). 

Individuals with a reduced susceptibility to estrone’s vitellogenin-inducing effects 

may have been inadvertently selected for in the sample, resulting in lower mean 

vitellogenin. Organismal variability also exists between fish, but perhaps more 

importantly, seasonal variability plays a role in reproductive function in fathead 

minnows (McMillan and Smith, 1974; Denton 1975; Smith 1978). The difference of 

two months (September to November) may have played a role in the rate of 

vitellogenesis, as the timeframe is moving farther away from peak spawning season 

for fathead minnows (Fig. 2.13), and the mean vitellogenin concentration was indeed 

lower in the second experiment (November). 

 

 

Figure 2.13: Values on the x-axis represent the percentage of mature spermatocytes, 
which peaks in late spring and early summer, then tapers off through the fall. Adapted 
from Seasonal changes in the histology of the gonads and dorsal skin of the fathead 
minnow, Pimephales promelas by R.J. Smith (1978).  
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have on vitellogenesis is shrouded by the overwhelming effect of estrone in this case, 

and we see an effective maximization of dose-response. Additional treatments of 

doses in excess of 135 ng estrone/L would be necessary to confirm this. At 78 ng 

estrone/L, however, we see significant interactions between estrone, temperature, and 

feeding regimen (experiment 1, Fig. 2.1a). In complete contrast to the predicted trends, 

the low temperature (18°C), restricted diet (0.75% body weight/day) treatment had a 

significantly higher mean vitellogenin concentration than any other treatment. We 

propose that this elevation in vitellogenin is a response to two factors: enhancement of 

estrogen-induced vitellogenesis due to the stress hormone cortisol and optimal 

breeding temperatures near 18°C that trigger reproductive potency. It has been 

demonstrated that cortisol (10 – 20 µg/100 mg body weight) has an enhancing effect 

on induction of vitellogenesis via 17β-estradiol in Asian stinging catfish 

(Heteropneustes fossilis) through purported effects on peptide hormones and enzyme 

induction (Sundararaj et al., 1982). Additionally, fathead minnow spawning tends to 

begin when water temperatures reach about 14°C to 18°C (McCarraher and Thomas, 

1968). Evidence from Smith 1978 suggests that reproductive efficacy peaks early in 

the spawning season, then tapers off as water temperatures warm (Fig. 2.13). Also 

worth mentioning with regards to the 78 ng estrone/L treatment (experiment 1) is the 

effect of high temperature (26°C) and restricted diet (0.75% body weight/day). This 

was the only treatment with a mean plasma vitellogenin concentration that was not 

significantly greater than that of the control. We suggest that this is due to the issue of 

a temperature-induced metabolism increase along with simultaneous food deprivation 
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– a situation that has potential environmental relevance in the face of climate change 

(Brander, 2007; Pörtner and Knust, 2007; Adrian et al., 2009; Noyes et al., 2009). In 

order to maintain homeostasis at a high metabolic rate, the organism will likely forgo 

reproductive functions (particularly energy-intensive functions such as vitellogenesis), 

in order to survive (Luquet and Watanabe, 1986; Izquierdo et al., 2001). Additionally, 

fish exposed at higher temperatures and fed a more liberal diet may consume more 

estrone-bound food due to increased metabolic demand. This may explain the increase 

magnitude of vitellogenin response that we see in the 26°C, ad libitum diet treatment 

over fish exposed at the same temperature, but fed a restricted diet. Interestingly, we 

do not see the same affect in the 135 ng estrone/L (high temperature, restricted diet) 

treatment in experiment 2. This is perhaps due to the increase in estrone concentration 

(~2x) over the first experiment, which may be sufficient to override metabolic 

safeguards for survival. This group (135 ng estrone/L, 26°C, restricted diet) exhibited 

lower survival (80%) than fish exposed to 78 ng estrone/L (90% survival) under the 

same environmental conditions in experiment 1 (Table 2.2). 

 Hematological endpoints in this study provided insight into temperature-

modulated metabolic function in fish. In high estrone treatments for both experiments, 

we see significant elevations in hematocrit in fish exposed at 18°C and fed ad libitum 

over other treatments (Fig. 2.2). This is unexpected, as elevated hematocrit is often 

associated with hypoxia (Gallaugher et al., 1995), which is more likely in the 26°C 

treatment. In a study of physiological responses to temperature acclimation and 

confinement stress in striped bass (Morone saxatilis), a reduction in hematocrit was 
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noted (Davis and Parker, 1990). Interestingly, this response was slow or non-existent 

at lower temperatures. Perhaps lower temperatures buffer the stressful effects of 

estrone in this case (Folmar et al., 2001). The hematocrit in the 18°C, restricted diet 

treatment that would otherwise be buffered is lower due to nutritional deficiency, 

potentially resulting in a reduction in erythrocytosis. 

 A similar trend is present for blood glucose concentrations in experiment 2, 

where we see an elevation in blood glucose in all 18°C, ad libitum treatments (Fig. 

2.3b). This may be a result of high carbohydrate bioavailability, but decreased cellular 

uptake. Larsen et al. (2001) hypothesized that temperature-related insulin fluctuations 

may be related to changes in insulin receptor internalization and turnover in liver 

tissues. Additionally, insulin receptor binding affinity is thought to be positively 

correlated with temperature increase (Freychet et al., 1971). 

 Anatomical endpoints were also highly dependent on temperature, but were 

largely unaffected by estrone concentration (Table 2.3, 2.4). Variability in mean 

gonadosomatic index (Fig. 2.5) and percentage of mature spermatozoa (Fig. 2.11) is 

strongly attributed to temperature in both experiments  (Table 2.3, 2.4). As discussed 

previously, Pimephales promelas begin spawning at temperatures of 14°C to 18 °C 

(McCarraher and Thomas, 1968), spermatogenesis peaks shortly thereafter (Fig. 2.13), 

and the process is largely temperature-controlled (Smith, 1978). This explains the 

greater mean gonadosomatic index in the 18°C-exposed fish from both experiments 

(Fig. 2.5). The same trend is present in mean sum of secondary sex characteristics in 

experiment 2 (Fig. 2.7b) and is most likely related to seasonal changes in reproductive 
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morphology as well (Smith 1978). While the gonad maturity (percent of mature 

spermatozoa) follows the expected trend of elevated mean in the 18°C-exposed fish in 

experiment 2 (Fig. 2.12b), the opposite is true for experiment 1 (Fig. 2.12a). It is worth 

noting, however, that the difference between the mean percentages of mature 

spermatozoa between temperatures (9.8±3.2) in experiment 1 (Fig. 2.12a) is not as 

great as the difference between the mean temperatures (17.38±3.5) in experiment 2 

(Fig. 2.12b), nor was the difference in mean gonadosomatic index as great in 

experiment 1 (Fig. 2.5). This may explain why body condition factor was significantly 

greater in the 18°C-exposed fish in experiment 2 (Fig. 2.4b), but not in experiment 1 

(Fig. 2.4a). Mean hepatosomatic index in experiment 1 (Fig. 2.6a) followed the same 

temperature trends observed in gonadosomatic index. This is potentially due to 

pathological hepatocytic hypertrophy and hyperplasia associated with increased 

estrogen receptor activity (Dietrich and Krieger, 2009) as reflected by a corresponding 

trend in plasma vitellogenin concentrations (Fig. 2.1a) at low temperatures. 

Vacuolization of the liver was insignificant in experiment 1, but is significantly greater 

in the 18°C-exposed fish in experiment 2, perhaps due to the metabolic burden 

associated with increased reproductive function (Roberts, 2012; Smith, 1978; Fig., 

2.13) resulting in increased nutrient storage (Hoar and Randall, 1988; Dietrich and 

Krieger, 2009). 

 The results of this study indicate that temperature has profound effects on 

various physiological and morphological aspects of Pimephales promelas, especially 

those related to metabolism. There is some evidence that low temperature (18°C), in 
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combination with a restricted diet (0.75% body weight/day), may increase the rate of 

estrone-induced (78 ng estrone/L) vitellogenesis in male fish (Fig. 2.1a). In contrast, it 

seems that diet restriction at higher temperatures (26°C) may offset vitellogenin 

induction (Fig. 2.1a). Analyses of vitellogenin concentrations, gonadosomatic index, 

secondary sex characteristics, hepatosomatic index and liver vacuolization suggest 

seasonal and temperature related trends (Denton and Yousef, 1975; Smith 1978), play 

a strong role in fish physiology and measured biological endpoints that are often used 

to determine sublethal toxicity in fishes (Colborn et al., 1993; Jobling et al., 1998; 

Schoenfuss et al., 2002; Vajda et al., 2008, Schultz et al., 2013). This subject requires 

further exploration, as the seasonality of exposure may play a large role in the 

perceived effects of pollutants tested on whole animals in a laboratory setting or 

samples taken in situ. Admittedly, increased temperature seemed to have the most 

dramatic consequence in comparison with other variables tested in this study: higher 

mortality. This is not to say that estrogens should be disregarded, as their effects on 

fish populations have been verified with a degree of confidence (Kidd et al., 2007). 

Ideally, laboratory testing on Pimephales promelas, and possibly other organisms, 

should be done at series of relevant temperatures in order to best assess the toxicity of 

pollutants in the laboratory, with the intention of extrapolating the findings to generate 

environmental standard 
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CHAPTER III 
 
 

MODULATION OF ESTRONE EXPOSURE EFFECTS MEDIATED THROUGH 
SALINITY IN MALE FATHEAD MINNOWS, PIMEPHALES PROMELAS 

 
 

INTRODUCTION 
 
 

The toxic effect of hypersalinization on freshwater organisms has been 

extensively documented (Adelman et al., 1976; Evans, 1987; Peterson and Meador, 

1994; Benbow and Merritt, 2005; Canada Council of Ministers of the Environment, 

2011; Elphick et al., 2011; Cañedo-Argüelles et al., 2013). Data indicate that 

environmental chloride concentrations are increasing over time, especially in urban 

areas, as road salt application increases (Oliver et al., 1974; Corsi et al., 2015). During 

times of low water flow in the summer and fall, chloride levels may exceed 800 mg/L, 

while normal levels fluctuate between 1-10 ppm (New Hampshire Department of 

Environmental Sciences, 2013). Watersheds in metropolitan areas of the northeastern 

United States can become particularly saline in the winter months, with concentrations 

of up to 4,629 ppm chloride recorded (Kaushal et al., 2005). Additionally, it is 

predicted that biogeochemical alterations associated with climate change will alter the 

salinity of aquatic systems (Moore et al., 1997). As the planet warms, we will see an 

increase in severe rain events (Poff et al., 2002; Noyes et al., 2009; Jeppesen et al.,  
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2010; Hooper et al., 2013; AAAS, 2014), rising sea levels that coincide with saltwater 

intrusion into freshwater habitat (Murdoch et al., 2000), and drought (Williamson et 

al., 2008; Whitehead et al., 2009; Taner, 2011), all of which have the potential to alter 

the salinity of freshwater systems (Justic et al., 1996; Jeppesen et al., 2010; Hooper et 

al., 2013). More insidious that direct toxicity, perhaps, is the interplay between 

increasing chloride concentrations and a host of xenobiotic chemicals (Heugens et al., 

2001; Schiedek et al., 2007; Fortin et al., 2007).  

High salinity has been shown to increase the toxicity of xenobiotic chemicals, 

such as aldicarb, fenthion, and L-selenomethionine phorate, through activation to more 

toxic intermediates following saltwater acclimation in anadromous fish (those which 

migrate into freshwater to spawn) (Schlenk and Lavado, 2011). There is also evidence 

that high salinity may increase the uptake of estrogen into fish tissues (Blewett et al., 

2012). In contrast, metal toxicity is reported to increase with decreasing salinity (Hall 

and Anderson, 1995). Estrogens can act alone as a potent environmental endocrine 

disruptor (Colborn et al., 1993; Jobling et al., 1998; Schoenfuss et al., 2002; Vajda et 

al., 2008, Schultz et al., 2013), and are known for their relative ubiquity (Kolpin et al., 

2002; Lee et al., 2011) especially in areas associated with anthropogenic influence, 

such as agricultural operations (Matthiessen et al. 2006; Chen et al. 2010) and densely 

populated urban areas (Barber et al., 2011; Lee et al., 2011; Martinovic-Weigelt et al. 

2013). Interestingly, the influence of salinity on estrogenic effects in fish has, to our 

knowledge, only been narrowly explored (Schlenk and Lavado, 2011; Blewett et al., 

2012).  
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This study seeks to determine whether salinity has the effect of modulating the 

observed biological effects of estrone, a common environmental estrogenic 

contaminant (Kolpin et al., 2002; Lee et al., 2011), on adult male fathead minnows 

(Pimephales promelas). Fathead minnows have a low chloride toxicity threshold (252 

ppm, chronic exposure) when compared with other freshwater organisms (Siegel, 

2007). We predicted that, in the presence of elevated aqueous chloride concentrations, 

the observed biological effects of estrone would be exacerbated. As salinity is 

increased, the solubility of oxygen in water is reduced (Roberts, 2012). It is suggested 

that the lipid-rich gill tissue is the primary site of entry for lipophilic estrogens into the 

bloodstream of teleosts (Blewett et al., 2012). Since increasing salinity decreases 

oxygen solubility in the water, changes in gill ventilation must accommodate this 

change to keep oxygen uptake constant (Roberts, 2012). A threefold increase in the 

uptake of estrogen was observed in 50% seawater over freshwater in the euryhaline 

fish (Blewett et al. 2012). An increase in salinity can also result in stress induction 

(Siegel, 2007; Roberts, 2012). A common stress hormone, cortisol, has been shown to 

produce an enhancing effect on estrogen-induced vitellogenesis in female Asian 

stinging catfish (10 – 20 µg cortisol/100 mg body weight) (Sundararaj et al., 1982; 

Hoar and Randall, 1988). Additionally, the bioavailability of estrone may be increased 

by the reduction in solubility of the chemical in saline water. This is known as the 

“salting out” effect (Schwarzenbach et al., 2003), whereby water molecules bind 

strongly to salts, making them unavailable to dissolve organic compounds, and 
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possibly increasing the degradation half-life of the compound (Song and Brown, 1998; 

Noyes et al., 2009). 

 
MATERIALS AND METHODS 

 
 

Ethics Statement 

 This study was approved by the St. Cloud State University Institutional Animal 

Care and Use Committee. 

 
Experimental Design 

Replicate flow-through exposures of mature male fathead minnows to a well 

water control, low estrone (15 ng/L nominal) or high estrone (100 ng/L nominal) 

treatment were maintained at the St. Cloud State University Aquatic Toxicology 

Laboratory in St. Cloud, MN. Chemical treatments were delivered to the aquaria using 

modifications to published flow-through protocol (Schoenfuss et al., 2008). In the first 

experiment, low estrone and high estrone treatments were exposed in well water, at 

low salinity (10 ppm added NaCl) or at high salinity (50 ppm added NaCl). In the 

second exposure, the low salinity treatment was eliminated due to minimal differences 

between well water control (93 ppm Cl) and 10 ppm added NaCl (96 ppm Cl) 

treatments. Each treatment was replicated in two aquaria, with 10 fish per tank (n=20). 

In the first experiment, a subset of fish was dissected on day 10, in order to obtain 

some data in the case that fish would not survive the standard 21-day exposure 

(Denny, 1987). The remainder of the fish dissected after 20 days of exposure. In the 

second experiment, fish were exposed for only 10 days. Exposures were maintained 
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on a 16 h light/8 h dark cycle. The first exposure began on October 29th, 2012, with 

dissections taking place on November 9th, 2012 (day 10) and November 19th, 2012 

(day 20). In the second experiment, exposure began on November 15th, 2012, and all 

fish were dissected on November 25th, 2012. Fish exposures were performed in 

accordance with the St. Cloud State University Institutional Animal Care and Use 

Committee (IACUC) policy. 

 
Exposure Chemicals 

Estrone (Sigma-Aldrich, St. Louis, MO) exposure solutions were prepared daily 

from aliquots of a concentrated estrone solution in 100% ethanol. Controls received 

100% ethanol equivalent to that in estrone treatments. Aliquots were stored at 4°C 

until use. 

Each day of the exposure, one treatment-specific aliquot was mixed with 10 L of 

ground water from a dedicated well. The solutions were kept in amber glass bottles 

during the exposure. Stir bars and plates were assigned to each amber glass bottle 

containing treatment solution. This method insured continuous agitation to avoid 

settling of the chemicals. Stainless steel tubes were used to draw the solution into a 

stainless steel mixing chamber via a Cole-Palmer Masterflex 7523-40 peristaltic pump 

at a nominal rate of 7 mL/min. Well water or saline water was also fed into the mixing 

chamber at a rate of 200 mL/min to achieve the final treatment concentration. Mixture 

was achieved by allowing the combined solution to fall over two barrier-walls within 

the mixing tank. The final solution was delivered directly to four aquaria via tubing 

extending from the bottom of the tank. Water exchange rate was approximately seven 
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exchanges/aquarium/day. 

 
Exposure Organisms 

Adult male fathead minnows (6 months old) were obtained from a laboratory fish 

rearing facility (US EPA, Cincinnati, OH), and were acclimated in untreated well 

water for approximately 3 weeks prior to exposure. Survival was assessed on a daily 

basis. All fish were fed an ad libitum diet of frozen brine shrimp (Artemia spp.) and 

frozen blood worms (Glycera spp.) and kept at a constant temperature of 

approximately 23°C. All fish maintenance was carried out in accordance with St. 

Cloud State University’s IACUC guidelines. 

 
Water Quality Analysis 

Physical parameters (temperature, pH, and conductivity) of each treatment 

were recorded once daily (YSI Model 556 MPS, YSI Environmental, Yellow Springs, 

OH). Total water hardness, free chlorine, total chlorine and alkalinity were measured 

periodically using AquaChek 5-in-1 Water Quality Test Strips (Hach Company, 

Loveland, CO). 

 
Water Chemistry Analysis 

At exposure days 5, 10, 15, 20, and on the day of dissection, two 120 mL water 

samples were taken from each treatment. Estrone concentrations were determined 

using previously published methods from Dammann et al., 2011. Ion concentrations 

were analyzed using EPA method 200.7 (Martin et al., 1992) and 300.0 (Pfaff, 1993). 
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Plasma Vitellogenin Analysis 

Blood was obtained from the severed caudal vasculature using a heparinized 

capillary tube after fish were anesthetized in 0.1% MS-222 (Argent Laboratories, 

Redmond, WA). Plasma was obtained following blood centrifugation at 8050 x g for 8 

min at 4°C and stored at -80°C prior to analysis. Plasma vitellogenin concentrations 

(µg/mL) were quantified via competitive antibody-capture ELISA using and 8 point 

serial dilution standard (4.8 µg/mL to 0.0375 µg/mL). Detailed methods of the assay 

are described in Shappell et al. (2010). 

 
Blood Glucose Analysis 

Using 1 µL of blood, a TRUEbalance Blood Glucose Monitor (Moore 

Medical, Farmington, CT) was used to quantify blood glucose concentration (mg/dL). 

Blood glucose was only measured in the second experiment. 

 
Hematocrit Analysis 

Blood was taken via the caudal artery using 75mm heparinized capillary tubes 

(ClearCRIT Plastic Capillary Tubes, Separation Technology Inc., Sanford, FL). 

Capillary tubes were sealed (Critoseal, Oxford Labware, St. Louis, MO) and placed in 

a microhematocrit centrifuge (HERMLE Z200A, Labnet International Inc., 

Woodbridge, NJ) for 3 minutes at 968 x g. Hematocrit was measured using a Spiracrit 

Micro-Hematocrit Tube Reader (Clay-Adams Inc., New York, NY). 

 
Organosomatic Indices 

Prior to dissection, individual fish were weighed (0.01 g precision, Taylor 
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Stainless Steel Food Scale, Taylor Precision Products, Oak Brook, IL) and measured 

for length to calculate body condition factor (BCF = body weight/total length3) 

(Fulton, 1904). To calculate hepatosomatic index (HSI = liver weight/whole body 

weight x 100) and gonadosomatic index (GSI = gonad weight/whole body weight x 

100), liver and gonads were excised and immediately weighed (0.001 g precision, 

Mettler Toledo AG245, Columbus, OH).   

 
Secondary Sex Characteristics 

Prior to dissection, an assessment of the male sexual characteristics of 

individual fish was performed. Tubercles, dorsal pad and banded coloration were 

given a separate rating of 1, 2 or 3 based on prominence (1 being the least prominent, 

3 being the most prominent) (Smith, 1978). The three values were added together as a 

method for comparing morphological sexual maturity between treatments.  

 
Histopathology 

Liver and gonads were excised from fish and placed in histological cassettes 

(Tissue-Loc Histoscreen Cassettes, Thermo Scientific, Kalamazoo, MI) in 10% 

buffered formalin for at least 24 hours. Dehydration and tissue preparation was 

achieved following previously prescribed procedures (Carson, 1997). Tissues were 

embedded in paraffin. Small samples (~1 mm diameter) of liver and gonad were 

sectioned at approximately 5 µm (Olympus Cut 4055 Microtome, Olympus America 

Inc., Center Valley, PA). Tissues were stained using a standard haematoxylin and 

eosin counter stain (Gabe, 1976; Carson, 1997).  
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Liver tissues were graded on a scale of 1 to 4 based on cellular vacuolization. A 

grade of 1 indicates that no vacuoles are visible under a 40x magnification, a grade of 

2 indicates that less than 25% of the visible tissue is occupied by vacuoles, a grade of 

3 indicates that 25-50% of the visible tissue is occupied by vacuoles, and a grade of 4 

indicates that the majority of the visible tissue consists of vacuoles.  

Testes were assessed based on the proportion of sperm cells (spermatogonia, 

spermatocytes, spermatids, and spermatozoa) present in the visible tissue. An 

experienced grader assigned cell percentage values (totaling 100%) to the samples. 

The overall maturity of the sample was calculated as: 

 
Gonad maturity rating = ((%spermatogonia) + (%spermatocytes x 2) + (%spermatids x 3) + 

(%spermatozoa x 4)) / 100  
 
 
Statistical Analysis 

 
 All data was assessed for normality using the Kolmogorov-Smirnov using 

Graphpad Prism software (Prism 5.0 statistical package, GraphPad Software, Inc., 

Oxnard, CA). Data were then analyzed using a two-way ANOVA followed by a 

Bonferroni post-test to determine treatment effects (NaCl, estrone, or interaction). 

Additionally, individual means were compared using a one-way ANOVA followed by 

a Tukey post-test. 
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RESULTS 
 
 

Chemical Data and Survival Rates 

 Estrone concentrations were lower in experiment 2 (low treatment: 7±1.8 ng/L, 

high treatment: 85±32.3 ng/L) than in experiment 1 (low treatment: 16±5.8 ng/L, high 

treatment: 138±97.3 ng/L) (Table 3.1). Chloride concentrations between the well 

water control and the 10 ppm added NaCl treatment differed by only about 2%, and 

thus this treatment was dropped from the second experiment (Table 3.2). Survival was 

high in both 10-day exposures (>88% in all treatments) (Table 3.3). Immediately 

following the 10-day dissection of experiment 1, there was a massive die off (~50%). 

This is believed to have been linked to routine cleaning, which may have introduced 

bleach into the system. 

 
Table 3.1. Average aqueous estrone concentrations in flow-through exposures; 
chemical analysis methods are consistent with those described in Shappell et al. 2010; 
samples were taken on days 5, 10, 15 and 20 of the exposure. 
 

 

Estrone(Treatment(
(Nominal)(

(

Average(Measured(Estrone(
Concentra9on(

(

Experiment(1(
Control' 0'ng/L'

15'ng/L' 16±5.8'ng/L'

100'ng/L' 138±97.3'ng/L'

Experiment(2(
Control' 0'ng/L'

15'ng/L' 7±1.8'ng/L'

100'ng/L' 85±32.3'ng/L'
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Table 3.2. Average aqueous chloride concentrations in flow-through exposures; 
samples were taken on days 5, 10, 15 and 20 of the exposure 
 

 

 
Table 3.3. Survival for each treatment across both experiments; four fish were taken 
from each tank (12 per treatment) for the day 10 dissection, these fish were not 
counted towards the total for day 21 survival calculation; mass casualties in 
experiment 2 due to experimental error with bleach (see discussion). 
 

 

 
Physiological Endpoints 

Exposure to 85 ng/L (experiment 2) and 138 ng/L (experiment 1) estrone 

resulted in significant increase in plasma vitellogenin concentrations over control fish. 

Neither aqueous estrone concentrations of 16 ng/L (experiment 1) and nor 7 ng/L 

(experiment 2) resulted in significant vitellogenin increase over control. Furthermore, 

NaCl%Added% Measured%Total%Sodium%
Concentra5on%

Measured%Total%Chloride%
Concentra5on%

Experiment%1%

None%(Well%Water)% 27±0.3%ppm% 93±0.1%ppm%

10%ppm% 30±0.4%ppm% 96±0.5%ppm%

50%ppm% 59±4.1%ppm% 141±4.7%ppm%

Experiment%2%
None%(Well%Water)% 29±0.1%ppm% 93±0.1%ppm%

50%ppm% 48±5.4%ppm% 126±0.7%ppm%

Well$Water$ 10$ppm$Added$NaCl$ 50 ppm Added NaCl 

Experiment 1, Day 10 

Control 88% (35/40) - - 

16 ng/L estrone 95% (38/40) 98% (39/40 95% (38/40) 

138 ng/L estrone 100% (40/40) 95% (38/40) 98% (39/40) 

Experiment 1, Day 21 

Control 78% (28/36) - - 

16 ng/L estrone 67% (24/36) 94% (34/36) 92% (33/36) 

138 ng/L estrone 39% (14/36) 43% (15/36) 94% (34/36) 

Experiment 2 

Control 89% (16/18) - - 

7 ng/L estrone 94% (16/17) - 94% (16/17) 

85 ng/L estrone 94% (17/18) - 89% (16/18) 
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the NaCl treatments used in this study did not significantly modulate vitellogenin 

levels in estrone-exposed male fathead minnows (Fig. 3.1). 

 

 

Figure 3.1. Plasma vitellogenin concentrations of male P. promelas after 10 days of 
exposure (a) and 21 days of exposure (b) to estrone during experiment 1 at 0, 10 and 
50 ppm added NaCl, and 10 days of estrone exposure in experiment 2 at 0 and 50 ppm 
added NaCl (c); letters above standard deviation bars indicate significantly different 
means at p<0.05; Two-Way ANOVA followed by Bonferroni post-test; One-Way 
ANOVA followed by Tukey post-test. 
 
 
 Estrone concentration accounted for all variance in hematocrit, while added 

NaCl showed no significant effect. Hematocrit did not differ significantly from control 

in the treatments of either of the 10-day exposures (Fig. 3.2a, c). In the 21 day 

exposure (experiment 1), hematocrit was significantly elevated over control (p<0.05) 

in fish exposed to 138 ng/L estrone at 50 ppm added NaCl (Fig. 3.2b). Blood glucose 

(measured only in experiment 2) was not significantly effected by aqueous estrone 

concentration or added NaCl (Fig. 3.3). 
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Figure 3.2: Hematocrit of male P. promelas after 10 days of exposure (a) and 21 days 
of exposure (b) to estrone during experiment 1 at 0, 10 and 50 ppm added NaCl, and 
10 days of estrone exposure in experiment 2 at 0 and 50 ppm added NaCl (c); * 
indicates significance at p<0.05; bars indicate standard deviation; Two-Way ANOVA 
followed by Bonferroni post-test; One-Way ANOVA followed by Tukey post-test. 
 
 

 

Figure 3.3. Blood glucose concentrations of male P. promelas after 10 days of 
exposure to estrone at 0 and 50 ppm added NaCl (experiment 2); blood glucose was 
not recorded for experiment 1; no significant differences between means; bars indicate 
standard deviation; Two-Way ANOVA followed by Bonferroni post-test; One-Way 
ANOVA followed by Tukey post-test. 
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Morphological Endpoints 

While added NaCl concentration did not significantly alter the observed 

magnitude of secondary sex characteristics (tubercles, dorsal pad, and color of male 

fish), estrone was responsible for some variance in fish exposed for 21 days 

(experiment 1) and in experiment 2 (Fig. 3.4). When examined independent of NaCl 

treatment, a decreasing trend in secondary sex characteristics is observed with 

increasing aqueous estrone concentration in all three data sets (Fig. 3.5), however, the 

majority of the means were not significantly different (p<0.05). 

Figure 3.4. Sum of secondary sex characteristics of male P. promelas after 10 days of 
exposure (a) and 21 days of exposure (b) to estrone during experiment 1 at 0, 10 and 
50 ppm added NaCl, and 10 days of estrone exposure in experiment 2 at 0 and 50 ppm 
added NaCl (c); letters above standard deviation bars indicate significantly different 
means at p<0.05; Two-Way ANOVA followed by Bonferroni post-test; One-Way 
ANOVA followed by Tukey post-test. 
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Figure 3.5. Sum of secondary sex characteristics of male P. promelas after 10 days of 
exposure (a) and 21 days of exposure (b) to estrone during experiment 1, and 10 days 
of estrone exposure in experiment 2; * indicates significance at p<0.05; bars indicate 
standard error; One-Way ANOVA with estrone treatments compared independent of 
added NaCl, followed by Tukey post-test. 
 
 

 Added NaCl did not significantly alter body condition factor, however, 

aqueous estrone concentration had a significant effect on variance in mean body 

condition factor (Fig. 3.6, 3.7). A significant decrease in body condition factor in both 

10-day exposures can be seen in the high (138 ng/L and 85 ng/L) estrone treatments 

(Fig. 3.7a, c). The effect in the 21-day exposure (experiment 1) differs in that the 138 

ng/L aqueous estrone, 50 ppm added NaCl treatment is elevated over control (Fig. 

3.6b). Added NaCl did not significantly alter organosomatic indices in either of the 

experiments, nor did estrone (Fig. 3.8, 3.9). 
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Figure 3.6. Body condition factor of male P. promelas after 10 days of exposure (a) 
and 21 days of exposure (b) to estrone during experiment 1 at 0, 10 and 50 ppm added 
NaCl, and 10 days of estrone exposure in experiment 2 at 0 and 50 ppm added NaCl 
(c); * indicates significance at p<0.05; bars indicate standard deviation; Two-Way 
ANOVA followed by Bonferroni post-test; One-Way ANOVA followed by Tukey 
post-test. 
 
 

 

Figure 3.7. Body condition factor of male P. promelas after 10 days of exposure (a) 
and 21 days of exposure (b) to estrone during experiment 1, and 10 days of estrone 
exposure in experiment 2; letters above standard deviation bars indicate significantly 
different means at p<0.05; One-Way ANOVA with estrone treatments compared 
independent of added NaCl, followed by Tukey post-test. 
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Figure 3.8. Gonadosomatic index of male P. promelas after 10 days of exposure (a) 
and 21 days of exposure (b) to estrone during experiment 1 at 0, 10 and 50 ppm added 
NaCl, and 10 days of estrone exposure in experiment 2 at 0 and 50 ppm added NaCl 
(c); no significant differences between groups; bars indicate standard deviation; Two-
Way ANOVA followed by Bonferroni post-test; One-Way ANOVA followed by 
Tukey post-test. 
 
 

 

Figure 3.9. Hepatosomatic index of male P. promelas after 10 days of exposure (a) 
and 21 days of exposure (b) to estrone during experiment 1 at 0, 10 and 50 ppm added 
NaCl, and 10 days of estrone exposure in experiment 2 at 0 and 50 ppm added NaCl 
(c); no significant differences between groups; bars indicate standard deviation; Two-
Way ANOVA followed by Bonferroni post-test; One-Way ANOVA followed by 
Tukey post-test. 
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significantly increased vacuolization in the low estrone treatment (7 ng/L) when 

compared with the high treatment (85 ng/L) when means are observed independent of 

added NaCl concentration (Fig. 3.11). Calculated gonad maturity GPA was not 

significantly variable between treatments in either of the experiments (Fig. 3.12). 

 

 

Figure 3.10. Liver vacuolization of male P. promelas after 10 days of exposure (a) and 
21 days of exposure (b) to estrone during experiment 1 at 0, 10 and 50 ppm added 
NaCl, and 10 days of estrone exposure in experiment 2 at 0 and 50 ppm added NaCl 
(c); * indicates significance at p<0.05; bars indicate standard deviation; Two-Way 
ANOVA followed by Bonferroni post-test; One-Way ANOVA followed by Tukey 
post-test. 
 
 

 

Figure 3.11. Liver vacuolization of male P. promelas after 10 days of exposure to 
estrone during experiment 1; * indicates significance at p<0.05; bars indicate standard 
deviation; One-Way ANOVA with estrone treatments compared independent of added 
NaCl, followed by Tukey post-test. 
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Figure 3.12. Gonad maturity “GPA” of male P. promelas after 10 days of exposure (a) 
and 21 days of exposure (b) to estrone during experiment 1 at 0, 10 and 50 ppm added 
NaCl, and 10 days of estrone exposure in experiment 2 at 0 and 50 ppm added NaCl 
(c); no significant differences between groups; bars indicate standard deviation; Two-
Way ANOVA followed by Bonferroni post-test; One-Way ANOVA followed by 
Tukey post-test. 

DISCUSSION 

The current study examined the impact of salinization on the biological effects 

(Colborn et al., 1993; Jobling et al., 1998; Schoenfuss et al., 2002; Vajda et al., 2008; 

Martinovic-Weigelt et al., 2013) of a common aquatic pollutant, estrone (Kolpin et al., 

2002; Lee et al., 2011; Schultz et al., 2013). It was hypothesized that the addition of 10 

and 50 ppm NaCl would increase receptor sensitivity (Schlenk and Lavado, 2011) and 

steroid uptake (Blewett et al. 2012), thereby exacerbating the observed biological 

effects associated with estrogen exposure in male fathead minnows. Based on the 

results, we reject this hypothesis. None of the variability in any of the endpoints 

measured can be significantly (p≥0.05) attributed to salinity flux. 

Elevated plasma vitellogenin concentrations in male fish are a hallmark of 

estrogenic exposure (Sumpter and Jobling, 1995, Matozzo et al., 2008). It was 
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expected that salinity would play a direct role in modulating this response, however, 

the only significant variability in the ANOVA was due to estrone. Vitellogenin 

concentrations in male fish exposed to aqueous concentrations of 138 ng/L 

(experiment 1) and 85 ng/L (experiment 2) estrone were significantly elevated over 

control, while concentrations of 16 ng estrone/L (experiment 1) and 7 ng estrone/L 

were not sufficient to cause significant vitellogenin induction (Fig. 3.1). These data 

suggest that in systems where estrone equivalents are ≥16 ng/L, plasma vitellogenin 

measurement may not serve as an effective endpoint to quantify the effects of 

exogenous compounds. We can also extrapolate from these low estrone treatments 

that, although there was not a “saline control” in this experiment, added NaCl 

concentrations of 50 ppm alone are not sufficient to elucidate a vitellogenic response. 

Interestingly, hematocrit was only elevated in the 21-day fish exposed to a high 

concentration of estrone (138 ng/L). Whether this is a result of increased exposure 

duration or an artifact of potential exposure to a chlorine disinfectant is cause for 

further examination. This may be of particular relevance, as wastewater treatment 

often results in a discharge of chlorine (Government of Canada, 1993), which may 

potentially coincide with hormone discharge (Ankley et al. 2007) and formation of 

additional toxic organic chlorinated compounds (Emmanuel et al., 2004). Toxicity of 

chlorine in fish is attributed to the oxidation of hemoglobin to methemoglobin and 

subsequent anoxia (Grothe and Eaton, 1975), which may in turn trigger an increase in 

erythrocyte production. The majority of the chlorine-related mortality occurred in the 

high estrone treatment. Whether or not this was due to the combined effects of the two 
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chemicals is impossible to determine, but may be, based on knowledge of hepatic, 

renal, and osmoregulatory toxicity mechanisms for both chemicals (Adelman et al., 

1976; Evans, 1987; Peterson and Meador, 1994; Folmar et al, 2001; Benbow and 

Merritt, 2005; Canada Council of Ministers of the Environment, 2011; Elphick et al., 

2011; Cañedo-Argüelles et al., 2013). It is also possible that elevated hematocrit in 

surviving fish is just an adaptive response to prolonged low dissolved oxygen 

associated with higher salinity. Perhaps 10 days was not a sufficient time-frame for 

this response, and is therefore not seen in either 10-day exposure. Gill deformations 

were noted in some fish in the NaCl treatments, and may also have played a role in 

reducing the efficiency of gas exchange, thereby necessitating an increase in 

erythrocyte production. 

In both experiments, we see a decreasing trend in secondary sex characteristic 

intensity as the concentration of estrone is increased. While the effect was only 

significant in the 21-day exposure, this observation is substantiated by the literature, 

which suggests that fathead minnow male secondary sex characteristics are 

accentuated at high androgen levels (Smith, 1974; Ankley et al., 2001) and reduced by 

estrogen receptor agonists (Harries et al., 2000). This notion is further corroborated by 

longstanding knowledge of feedback loops associated with the vertebrate 

hypothalamic-pituitary-gonadal axis. At moderate concentrations, estrogens elicit 

negative feedback suppression of gonadotropin-releasing hormone (Dorling et al., 

2003), however at high concentrations, for periods of time in excess of 36 hours, 
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feedback becomes positive and gonadotropin release (particularly luteinizing 

hormone) is stimulated (Silverthorn, 2013). 

 Body condition factor of fish exposed to high estrone concentrations in both of 

the 10-day exposures was significantly lower than both control and low estrone-treated 

fish. Hepatic and renal dysfunction associated with high vitellogenin values has been 

observed in male summer flounder (Paralichthys dentatus) injected with 17β-estradiol 

(0.1 – 10.0 mg 17β-estradiol/kg body weight) (Folmar et al., 2001). Reduction in 

hepatic-metabolic function could be responsible for the weight loss in these fathead 

minnows. Increased hepatic vacuolization in the day-10 data from experiment 1 (Fig. 

3.10) is consistent with these findings. Interestingly, trends in mean hepatosomatic 

index do not show that liver weights are proportionally higher, though, in these fish. 

This likely indicates a lack of true hypertrophy, but rather a simple increase in stress-

induced energy storage, which may be detrimental to liver function. 

 While this study determined that added NaCl concentrations of 10 and 50 ppm 

do not significantly alter the observed biological effects of estrone, it fails to fully 

answer the question as to whether salinity plays a role in the severity of estrogenic 

effects in male fathead minnows. This is due to several factors. Most importantly, this 

study lacked a low-salinity control. The chloride concentration of the well water used 

in this exposure was approximately 95 ppm (Table 3.2). This makes the addition of 50 

ppm NaCl (30.3 ppm chloride) less dramatic, and introduces the possibility of a fish 

population that is already acclimating to what may be relatively high salinity in 

comparison with their previous culture parameters, considering that normal chloride 
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concentrations in freshwater systems range from 1-10 ppm (New Hampshire 

Department of Environmental Sciences, 2013). Behavioral observations of a subset of 

fish may serve as an indication of acclimation from a different water source. For 

example, it would be useful to observe the rate of opercular movements. A reduction 

in opercular movements over time may indicate changes in respiratory physiology and 

morphology associated with acclimation to lower dissolved oxygen associated with 

higher salinity (Blewett et al., 2012). All treatments were low in comparison with the 

United States Environmental Protection Agency (USEPA) chronic water quality 

criteria concentration of 230 ppm chloride (U.S. Environmental Protection Agency, 

1988) and the chronic toxicity threshold for the fathead minnow of 252 ppm chloride 

(Siegel, 2007). Some metropolitan watersheds may see levels exceeding 2,000 ppm 

(Kaushal et al., 2005). Finally, this experiment, if replicated, should contain a true 

saline control (no estrone) to absolutely rule out any biological effects that might arise 

solely due to salinity. 

 The observations from this study provide some valuable insight into the 

biological effects of estrone, particularly with regards to vitellogenin induction 

thresholds (there is a lack of significant induction at concentrations ≤16ng/L). It also 

serves as a lesson in laboratory maintenance, especially when using chemicals, like 

sodium hypochlorite, that are known to be acutely toxic to aquatic life. As is often the 

case, new ideas can potentiate from perceived mistakes. The introduction of a 

chlorinated substance into the system, and the observed effects certainly raise 

questions and open the door for further exploration. We should also further explore the 
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issue of interaction between salinity and estrogenic effects. Based on the threat of 

climate change-associated salinity fluctuations in freshwater systems (Justic et al., 

1996; Moore et al., 1997; Jeppesen et al., 2010; Hooper et al., 2013) and the chloride-

associated physiological mechanisms that have the potential to modulate estrogenic 

effects (Hoar and Randall, 1988; Song and Brown, 1998; Schwarzenbach et al., 2003; 

Noyes et al., 2009; Schlenk and Lavado, 2011; Blewett et al., 2012; Roberts, 2012) it 

would be warranted to revisit this issue. Ideally this would be achieved using total 

chloride concentrations consistent with environmental fluctuations as described in 

Corsi et al. 2015. Environmental concentrations are consistently higher than those 

tested in this study, and may be sufficient to corroborate the original hypothesis. 
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CHAPTER IV 
 
 

MODULATION OF ESTRONE EXPOSURE EFFECTS MEDIATED THROUGH 
DISSOLVED OXYGEN IN MALE FATHEAD MINNOWS, PIMEPHALES 

PROMELAS 
 
 

INTRODUCTION 
 
 

Anthropogenic influences, such as agricultural operations (Soto et al., 2004; 

Matthiessen et al. 2006; Chen et al. 2010) and urban runoff (Barber et al., 2011; Lee et 

al., 2011; Martinovic-Weigelt et al. 2013) place a chemical burden on aquatic systems. 

Estrogenic compounds, such as estrone (E1), 17ß-estradiol (E2), and the synthetic 

17α-ethynylestradiol (EE2), exhibit widespread occurrence (Kolpin et al., 2002; Lee et 

al., 2011) and interfere with reproductive function in fish (Colborn et al., 1993; 

Jobling et al., 1998; Schoenfuss et al., 2002; Vajda et al., 2008, Schultz et al., 2013). 

While examination of dose-dependent effects of individual aquatic contaminants is 

relatively straightforward due to standardized culture techniques (Denny, 1987), there 

is still much to be known about the effects of chemical mixtures and the interaction 

between physical environmental parameters. The need for this type of research is 

becoming increasingly urgent as the ecological reach of human impact broadens and 

as the introduction and fate of biologically active chemicals is altered in the face of a  
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changing climate (Oreskes, 2004). 

Historical data (Stahl et al., 2013) and models of freshwater systems (Moore et 

al., 1997; Jeppesen et al., 2010) frequently indicate increasing prevalence of hypoxic 

conditions as a result of climate change, due to increased surface water temperature 

(Murdoch et al., 2000), prolonged thermal stratification (Taner et al., 2011) and 

increased nutrient runoff (Adrian et al., 2009) in densely populated and agricultural 

areas. Incidentally, these are the areas most commonly associated with the discharge 

of contaminants (Soto et al., 2004; Matthiessen et al. 2006; Chen et al. 2010; Barber et 

al., 2011; Lee et al., 2011; Martinovic et al. 2013). Hypoxic conditions suppress 

reproductive function in Cyprinus carpio (Wu et al., 2003), Micropogonias undulatus 

(Thomas et al., 2006), and Fundulus grandis (Landry et al., 2007), and increase 

estrogen receptor transcriptional activity synergistically in combination with estradiol 

(Yi et al., 2009). Hypoxia has also been implicated in an increase of uptake (Blewett et 

al., 2012) and toxicity of certain chemicals in fish (Ficke et al., 2007). The affinity for 

organismal congregation near effluent discharge (Spigarelli et al., 1982) may place 

organisms at additional risk. Behavioral changes in an oxygen gradient are, of course, 

not limited to spatial migration. Respiratory movements are increased in low oxygen 

conditions in order to maintain homeostatic balance in fishes (Gee et al., 1978; Wares 

and Igram, 1979). The lipophilic gill tissues of teleost fish are thought to be a primary 

site for uptake of steroidal compounds (Blewett et al., 2012). For this reason, we 

suggest that a higher rate of opercular movement, resulting from hypoxic conditions 

(Gee et al., 1978; Wares and Igram, 1979), may result in an increase in volume of 
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chemical exposure, and a subsequent increase in uptake of steroidal compounds such 

as estrogens. By measuring plasma vitellogenin concentrations in male fathead 

minnows (Pimephales promelas) we can quantify the impact of estrone on individual 

fish (Sumpter and Jobling, 1995; Matozzo et al., 2008). In a study of the effect of 

hypoxia on responses to a mixture of estrogenic chemicals, no effect was found (Brian 

et al., 2009). The interaction between dissolved oxygen and individual estrogenic 

compounds has, to our knowledge, not been measured. 

In this study, we examine the effect of dissolved oxygen concentration on 

observed biological endpoints commonly associated with estrogenic exposure. It was 

hypothesized that hypoxia would intensify the observed effects of exposure to a single 

estrogenic compound. However, if this was rejected, the data would indicate that 

biomarkers of estrogen-induced endocrine disruption are expressed similarly 

regardless of dissolved oxygen conditions, as observed with mixtures in Brian et al. 

2009. Estrone (E1) was used as a representative estrogenic compound due to its 

environmental relevance, as it is often found at concentrations higher than other 

estrogenic chemicals (Kolpin et al., 2002,; Dammann et al., 2011) due to oxidative 

breakdown of estradiol after it is introduced into the environment (Ying et al., 2002). 

If dissolved oxygen is found to significantly modulate induction of estrogenic 

exposure biomarkers, it will serve to indicate that water quality parameters are a 

pertinent variable to be considered when measuring the effects of estrone, and possibly 

other steroidal chemical pollutants. 

 
 



www.manaraa.com

!
!

75 

 
MATERIALS AND METHODS 

 
 

Ethics Statement 

 This study was approved by the St. Cloud State University Institutional Animal 

Care and Use Committee. 

 
Experimental Design 

Replicate flow-through exposures of mature male fathead minnows (6 months 

old, Environmental Consulting & Testing, Superior, WI) to either an ethanol carrier 

control, low estrone (51 ng/L in Experiment 1; 13 ng/L in Experiment 2) or high 

estrone (390 ng/L in Experiment 1; 282 ng/L in Experiment 2) treatment was 

maintained for 21 days at the St. Cloud State University Aquatic Toxicology 

Laboratory in St. Cloud, MN. Fish were kept on a 16 h light/8 h dark cycle. Exposure 

began on August 23rd and ended on September 14th for experiment 1 and began on 

October 31st, 2014 and ended on November 21st, 2014 for experiment 2. Chemical 

treatments were delivered to the aquaria using modifications to published flow-

through protocol (Schoenfuss et al., 2008). Some modification of the configuration 

was necessary in order to minimize dissolved oxygen in the non-aerated treatments by 

decreasing surface agitation in the stainless steel mixing tanks. Ethanol control, low 

estrone and high estrone treatments were exposed at either a low (no aeration) or a 

high (aerated) dissolved oxygen (DO) concentration. Each treatment was replicated in 

two aquaria, with 10 fish per tank (N=20). On day 22, all fish were dissected in 
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accordance with St. Cloud State University Institutional Animal Care and Use 

Committee (IACUC) policy. 

 
Exposure Chemicals 

Estrone (Sigma-Aldrich, St. Louis, MO) exposure solutions were prepared daily 

from aliquots of an estrone solution in 100% ethanol. Control treatments received 2 

mL of 100% ethanol to rule out any effect from the ethanol carrier. Aliquots were 

stored at 4°C until use. 

Each day, beginning on the first day of exposure, one treatment-specific aliquot 

was mixed with 10 L of ground water from a dedicated well. The solutions were kept 

in amber glass bottles during the exposure. Stir bars and plates were assigned to each 

amber glass bottle containing treatment solution. This method insured continuous 

agitation to avoid settling of the chemicals. Stainless steel tubes were used to draw the 

solution into a stainless steel mixing chamber via a Cole-Palmer Masterflex 7523-40 

peristaltic pump at a nominal rate of 7 mL/min. Ground water from the same dedicated 

well was gravity-fed into the mixing chamber at a rate of 200 mL/min to achieve the 

final treatment concentration. Mixture was achieved by allowing the combined 

solution to fall over two barrier-walls within the mixing tank. The final solution was 

delivered directly to four aquaria via tubing extending from the bottom of the tank. 

Water exchange rate was approximately seven exchanges/aquarium/day. 

 
Exposure Organisms 

Adult male fathead minnows were obtained exclusively from a laboratory supplier 
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(Environmental Consulting & Testing, Superior, WI). Survival was assessed on a daily 

basis. All fish were fed an ad libitum diet of frozen brine shrimp (Artemia spp.) and 

frozen blood worms (Glycera spp.) and kept at a constant 25°C. Fish were placed in 

tanks 7 days prior to estrone exposure to acclimate to their respective dissolved 

oxygen concentration. All fish maintenance was carried out in accordance with St. 

Cloud State University’s IACUC guidelines. 

 
Water Quality Analysis 

Physical parameters (temperature, conductivity, total dissolved solids, salinity, 

dissolved oxygen, pH, and oxidation reduction potential) of each aquarium were 

recorded each morning using a (YSI Model 556 MPS, YSI Environmental, Yellow 

Springs, OH). In addition, dissolved oxygen and temperature were recorded during the 

afternoon and evening in addition to the aforementioned reading. Total water 

hardness, free chlorine, total chlorine and alkalinity were measured periodically using 

AquaChek 5-in-1 Water Quality Test Strips (Hach Company, Loveland, CO). 

 
Water Chemistry Analysis 

Water samples were collected from the mixing tank outflow on days 5, 10, 15, 

and 20 of exposure. On the day of dissection, two 120 mL water samples were taken 

from each treatment. Water samples were stored at -20°C. Aqueous estrone 

concentrations from experiment 1 were determined using LCMS as described in 

Shappell et al., 2010. A DetectX Estrone Enzyme Immunoassay Kit (Arbor Assays, 

Ann Arbor, MI) was used to measure estrone water concentrations from experiment 2. 
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Samples and standards were added to clear, 96-well microtiter plates coated with an 

antibody to capture rabbit antibodies. The addition of a polyclonal estrone antibody 

initiates binding of an estrone-peroxidase conjugate. After an incubation the plate is 

washed and a substrate is added, and reacts with the bound estrone-peroxidase 

conjugate. This induces color generation that was measured using a Multiskan EX 

spectrophotometer (Thermo Scientific, Waltham, MA) at 450 nm. Samples and 

standards (7-point curve) were run in duplicate to ensure consistency. 

 
Plasma Vitellogenin Analysis 

Blood was obtained from the severed caudal vasculature using a heparinized 

capillary tube after fish were anesthetized in 0.1% MS-222 (Argent Laboratories, 

Redmond, WA). Plasma was obtained following blood centrifugation at 8050 x g for 8 

min at 4°C and stored at -80°C prior to analysis. Plasma vitellogenin concentrations 

(µg/mL) were quantified via competitive antibody-capture ELISA using and 8 point 

serial dilution standard (4.8 µg/mL to 0.0375 µg/mL). Detailed methods of the assay 

are described in Shappell et al. (2010). 

 
Blood Glucose Analysis 

Using 1 µL of blood, a TRUEbalance Blood Glucose Monitor (Moore 

Medical, Farmington, CT) was used to quantify blood glucose concentration (mg/dL). 

 
Hematocrit Analysis 

Blood was taken via the caudal artery using 75mm heparinized capillary tubes 

(ClearCRIT Plastic Capillary Tubes, Separation Technology Inc., Sanford, FL). 
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Capillary tubes were sealed (Critoseal, Oxford Labware, St. Louis, MO) and placed in 

a microhematocrit centrifuge (HERMLE Z200A, Labnet International Inc., 

Woodbridge, NJ) for 3 minutes at 968 x g. Hematocrit was measured using a Spiracrit 

Micro-Hematocrit Tube Reader (Clay-Adams Inc., New York, NY). 

 
Organosomatic Indices 

Prior to dissection, individual fish were weighed (0.01 g precision, Taylor 

Stainless Steel Food Scale, Taylor Precision Products, Oak Brook, IL) and measured 

for length to calculate body condition factor (BCF = body weight/total length3) 

(Fulton, 1904). To calculate hepatosomatic index (HSI = liver weight/whole body 

weight x 100) and gonadosomatic index (GSI = gonad weight/whole body weight x 

100), liver and gonads were excised and immediately weighed (0.001 g precision, 

Mettler Toledo AG245, Columbus, OH).   

 
Secondary Sex Characteristics 

Prior to dissection, an assessment of the male sexual characteristics of 

individual fish was performed. Tubercles, dorsal pad and banded coloration were 

given a separate rating of 1, 2 or 3 based on prominence (1 being the least prominent, 

3 being the most prominent) (Smith, 1978). The three values were added together as a 

method for comparing morphological sexual maturity between treatments.  

 
Histopathology 

Liver and gonads were excised from fish and placed in histological cassettes 

(Tissue-Loc Histoscreen Cassettes, Thermo Scientific, Kalamazoo, MI) in 10% 
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buffered formalin for at least 24 hours. Dehydration and tissue preparation was 

achieved following previously prescribed procedures (Carson, 1997). Tissues were 

embedded in paraffin. Small samples (~1 mm diameter) of liver and gonad were 

sectioned at approximately 5 µm (Olympus Cut 4055 Microtome, Olympus America 

Inc., Center Valley, PA). Tissues were stained using a standard haematoxylin and 

eosin counter stain (Gabe, 1976; Carson, 1997).  

Liver tissues were graded on a scale of 1 to 4 based on cellular vacuolization. A 

grade of 1 indicates that no vacuoles are visible under a 40x magnification, a grade of 

2 indicates that less than 25% of the visible tissue is occupied by vacuoles, a grade of 

3 indicates that 25-50% of the visible tissue is occupied by vacuoles, and a grade of 4 

indicates that the majority of the visible tissue consists of vacuoles.  

Testes were assessed based on the proportion of sperm cells (spermatogonia, 

spermatocytes, spermatids, and spermatozoa) present in the visible tissue. An 

experienced grader assigned cell percentage values (totaling 100%) to the samples. 

Furthermore, to represent the overall maturity of the sample, we used: 

 
Gonad maturity rating = ((%spermatogonia) + (%spermatocytes x 2) + (%spermatids x 3) + 

(%spermatozoa x 4)) / 100  
 
 
Statistical Analysis 

 All data was assessed for normality using the Kolmogorov-Smirnov using 

Graphpad Prism software (Prism 5.0 statistical package, GraphPad Software, Inc., 

Oxnard, CA). Data were then analyzed using a two-way ANOVA followed by a 

Bonferroni post-test. Additionally, some data were re-interpreted using a one-way 
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ANOVA followed by a Tukey post-test. 

 
RESULTS 

 
 

Chemical Data and Survival Rates 

 The average measured aqueous estrone concentrations were 51 ng/L (low 

estrone) and 390 ng/L (high estrone) in experiment 1, and 13 ng/L (low estrone) and 

282 ng/L (high estrone) in experiment 2. Dissolved oxygen averaged 1.5±0.34 mg/L 

(low dissolved oxygen) and 9.4±0.41 mg/L (high dissolved oxygen) in experiment 1 

(Fig. 4.1a) and 1.8±0.38 mg/L (low dissolved oxygen) and 8.9±0.55 mg/L (high 

dissolved oxygen) in experiment 2 (Fig. 4.1b). Dissolved oxygen was not recorded 

from days 17-20 in experiment 1 due to equipment malfunction. Survival was lowest 

in the high estrone, low dissolved oxygen treatment in both experiments (75% in 

experiment 1, 80% in experiment 2) (Table 4.1). 

 

 

Figure 4.1. Measured dissolved oxygen values for experiment 1 (a) and experiment 2 
(b); bars represent standard deviation. 
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Table 4.1. Percent survival and number of survivors (survived full exposure/total fish 
at beginning of experiment) within individual treatments in experiment 1 and 
experiment 2. 
 

 

 
Physiological Endpoints 

 In both experiments, plasma vitellogenin concentrations were significantly 

elevated over control in all estrone-treated groups. Plasma vitellogenin concentrations 

did not differ significantly between high and low estrone treatments in either 

experiment. In both experiments, the low estrone, low dissolved oxygen treatment had 

significantly higher plasma vitellogenin concentrations than low estrone, high 

dissolved oxygen treatment (Fig. 4.2, Two-Way ANOVA followed by Bonferroni 

Post-Test, p<0.05).  

 

Low$D.O.$ High$D.O.$

Experiment$1$

EtOH$ 80%$(16/20)$ 90%$(18/20)$

51$ng/L$estrone$ 95%$(19/20)$ 100%$(20/20)$

390$ng/L$estrone$ 75%$(15/20)$ 95%$(19/20)$

Experiment$2$

EtOH$ 90%$(18/20)$ 100%$(20/20)$

13$ng/L$estrone$ 85%$(17/20)$ 100%$(20/20)$

282$ng/L$estrone$ 80%$(16/20)$ 90%$(18/20)$



www.manaraa.com

!
!

83 

 

Figure 4.2. Plasma vitellogenin concentrations of male P. promelas after 21 days of 
exposure to estrone during experiment 1 (a) and experiment 2 (b); bars indicate 
standard deviation; * indicates significance at p<0.05; Two-Way ANOVA followed 
by Bonferroni post-test. 
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oxygen in either experiment (Fig. 4.3). In experiment 1, blood glucose concentrations 

of low estrone-treated P. promelas were significantly lower than the control (One-

Way ANOVA with estrone treatments compared independent of dissolved oxygen, 

followed by Tukey post-test, p<0.05; Fig. 4.4), however, these results were not 

replicated in experiment 2.  
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Figure 4.3. Blood glucose concentrations of male P. promelas after 21 days of 
exposure to estrone during experiment 1 (a) and experiment 2 (b); bars indicate 
standard deviation. 
 
 

 

Figure 4.4. Blood glucose concentrations of male P. promelas after 21 days of 
exposure to estrone during experiment 1 (a) and experiment 2 (b); letters above 
standard deviation bars indicate significant differences at p<0.05; One-Way ANOVA 
with estrone treatments compared independent of dissolved oxygen, followed by 
Tukey post-test. 
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of high estrone-treated (390 ng/L) fish were only significantly lower than the low 

estrone-treated fish. In experiment two, however, high estrone-treated (282 ng/L) fish 

had significantly lower hematocrit than both control and low estrone-treated (13 ng/L) 

fish. 

 

 

Figure 4.5. Hematocrit of male P. promelas after 21 days of exposure to estrone 
during experiment 1 (a) and experiment 2 (b); bars indicate standard deviation. 
 

 

Figure 4.6. Hematocrit of male P. promelas after 21 days of exposure to estrone 
during experiment 1 (a) and experiment 2 (b); letters above standard deviation bars 
indicate significant differences at p<0.05; One-Way ANOVA with estrone treatments 
compared independent of dissolved oxygen, followed by Tukey post-test. 
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Morphological Endpoints 

 Body condition factor, gonadosomatic index, and hepatosomatic index were 

not affected by dissolved oxygen (Fig. 4.7, 4.8, 4.10). In experiment 1, control fish 

had significantly elevated body condition factor over low estrone-treated fish, however 

no such relationship was observed in experiment 2. Gonadosomatic index was not 

significantly variable between any treatments except for in the case of the high estrone 

treatment (282 ng/L) in experiment 2, which was significantly lower than both control 

and low estrone-treated (13 ng/L) fish (Fig. 4.9). In experiment one, hepatosomatic 

index in high estrone-treated fish was significantly lower than both control and low 

estrone-treated fish. Hepatosomatic index did not differ from control in either of the 

estrone treatments in experiment 2. 

 

 

Figure 4.7. Body condition factor of male P. promelas after 21 days of exposure to 
estrone during experiment 1 (a) and experiment 2 (b). 
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Figure 4.8. Gonadosomatic index of male P. promelas after 21 days of exposure to 
estrone during experiment 1 (a) and experiment 2 (b); bars indicate standard deviation. 
 
 

 

Figure 4.9. Hematocrit of male P. promelas after 21 days of exposure to estrone 
during experiment 1 (a) and experiment 2 (b); letters above standard deviation bars 
indicate significant differences at p<0.05; One-Way ANOVA with estrone treatments 
compared independent of dissolved oxygen, followed by Tukey post-test. 
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Figure 4.10. Hepatosomatic index of male P. promelas after 21 days of exposure to 
estrone during experiment 1 (a) and experiment 2 (b); bars indicate standard deviation. 
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exposed at high dissolved oxygen (Fig. 4.11). 
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Figure 4.11. Sum of secondary sex characteristics of male P. promelas after 21 days of 
exposure to estrone during experiment 1 (a) and experiment 2 (b); bars indicate 
standard deviation; * indicates significance at p<0.05; Two-Way ANOVA followed 
by Bonferroni post-test. 
 
 

DISCUSSION 
 
 

 This study was a series of two experiments designed to determine whether 

dissolved oxygen would alter physiological and morphological endpoints measured to 

quantify the effects of estrone, a known endocrine-disrupting chemical in fish (Panter 

et al., 1998; Van den Belt et al., 2004; Dammann et al., 2011). Estrone exposure 

caused vitellogenin induction in all treatments. There was no statistical difference 

between high and low treatments. This is surprising due to the disparity between 

measured concentrations (approximately a four-fold difference in experiment 1 and a 

22-fold difference in experiment 2). Previous, unpublished data (Chapter 2, 3) has 

indicated that estrone concentrations as high as 16 ng/L had no significant effect in 

inducing vitellogenin concentrations over control fish. Therefore, we estimate that the 

ELISA chemical data from the second exposure is inaccurate and requires further 

EtOH 51 ng/L 390 ng/L
0

2

4

6

8

Measured E1 Concentration (ng/L)

Su
m

 o
f S

ec
on

da
ry

 S
ex

 C
ha

ra
ct

er
is

tic
s

EtOH 13 ng/L 282 ng/L
0

2

4

6

8

Measured E1 Concentration (ng/L)

*"
(b)"(a)"

EtOH 51 ng/L 390 ng/L
0

100

200

300

400
Low D.O.
High D.O.

Measured E1 Concentration (ng/L)

Vi
te

llo
ge

ni
n 

(µ
g/

m
L)



www.manaraa.com

!
!

90 

examination using methods that were utilized in experiment one (LCMS) as described 

in Shappell et al., 2010.  

 Of particular interest is the disparity in vitellogenin concentrations between the 

high and low dissolved oxygen treatments in low estrone-treated fish from both 

experiments. Changes in gill physiology and ventilation occur to facilitate oxygen 

uptake (Blewett et al., 2012). Increases in gill surface area have been documented in 

Cyprinidae exposed to hypoxic conditions (Evans, 1987). In a low oxygen 

environment, opercular movements may increase to keep oxygen uptake constant 

(Roberts, 2012). An increase in flow rate of estrone-laced water past the gills is the 

likely cause of increased uptake. Observation during the exposure indicated that fish in 

low dissolved oxygen treatments were respiring more rapidly, however this could not 

be quantified. In addition to modified respiration, it was noted that fish in low 

dissolved oxygen treatments tend to congregate near the inflow, as opposed to high 

dissolved oxygen treatments in which fish were much more mobile. This behavior 

may have additional implications, such as the possibility of ecological traps: in this 

case, point source releases that attract organisms (Kristan, 2003). Effluent sources, 

where pollutant concentration is highest, may attract fishes due to heat and oxygen 

gradients (Spigarelli et al., 1982). In a low oxygen environment, fish may congregate 

near surface-agitated water to increase oxygen consumption. If the source of the 

surface agitation is a wastewater discharge, for example, where pollutants enter the 

system in the least diluted state. 
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 The difference in vitellogenin induction between low and high dissolved 

oxygen that was present in the low estrone treatments of both experiments was not 

mirrored by the high estrone treatments of either experiment. It is likely that at these 

concentrations (390 ng/L in experiment 1 and 282 ng/L in experiment 2) the dose 

response is maximized regardless of dissolved oxygen’s effect on uptake of estrone. 

 While blood glucose concentrations did not appear to have any meaningful 

significant trends in this data set, it is a worthy endpoint for future studies. The 

simplicity of blood glucose testing alone makes it worthwhile, though it does have 

pitfalls. As a short-term analysis of metabolic stress, blood glucose may be skewed by 

the stress of moving the fish prior to dissection in laboratory exposures such as this 

one (David and Parker, 1990). 

 The average percentage of blood cell volume in high estrone-treated (282 

ng/L) fish was significantly lower than both control and low estrone-treated (13 ng/L) 

fish in experiment 2. At first glance, one may attribute this difference to nutritional 

deficit due to a high rate of vitellogenesis in estrone treated fish. The vitellogenin data, 

however, does not fully corroborate this assumption. While not significantly different 

(p≥0.05), the average plasma vitellogenin concentration in low estrone-treated fish 

was in fact greater (113 µg/L) than that of the average high estrone-treated fish (90 

µg/L) in experiment 2. It is also worth noting that this phenomenon (decreased 

hematocrit) does not occur in experiment one, however, the estrone concentrations in 

experiment 2 are likely higher than what was indicated by the ELISA (the ELISA 

indicates that the low estrone treatment averaged 13 ng/L, a concentration that is not 
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likely to induce vitellogenesis per data from chapter 2 and 3). This data, therefore, 

suggests that at high doses, however, estrone may have physiological ramifications 

other than vitellogenin induction, which place the organism under further metabolic 

stress. Renal toxicity due to very high doses of estradiol has been observed in male 

summer flounder (Paralichthys dentatus ) (Folmar et al., 2001). It is possible that 

kidney damage occurred in the 282 ng estrone/L treatment (experiment 2), and 

resulted in reduced production of erythropoietin production in the kidneys, in turn 

reducing red blood cell production (American Society of Hematology, 2015). 

 While dissolved oxygen had no effect on the morphological endpoints 

measured in this study, the variation caused by estrone is worth examination. 

Gonadosomatic index in the highest concentration of estrone tested (282 ng/L) was 

significantly lower than both the control and low estrone treatment in the same 

experiment (2). Vitellogenin concentrations, interestingly, were the lowest, on 

average, in the treatment group with the highest estrone concentration (Fig. 4.4), 

further reinforcing the thought that vitellogenin may not provide a comprehensive 

quantification of estrone’s effects at high doses.  

 Variation in the sum of secondary sex characteristics in low estrone-treated 

fish in experiment 1 raises questions. Low estrone-treated fish exposed at low 

dissolved oxygen had significantly lower secondary sex characteristics sums than low 

estrone-treated fish exposed at high dissolved oxygen (Fig. 4.11). This data is 

consistent with significant variations in vitellogenin concentrations in the same 

treatments in experiment 1, with low estrone-treated, low dissolved oxygen fish 
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displaying higher plasma vitellogenin concentrations than low estrone-treated, high 

dissolved oxygen fish. This may suggest a correlation between morphologically 

dominant males and reduced vitellogenin expression. This relationship is not mirrored 

in the second experiment, however, where the difference in vitellogenin induction 

between low and high dissolved oxygen is the greatest (Fig. 4.2b). Still this potential 

relationship is cause for further examination of the correlation between secondary sex 

characteristics and vitellogenin induction.  

 This study provides some indication that laboratory chemical toxicity tests 

should be performed under various dissolved oxygen concentrations to account for 

potential changes in uptake due to gill ventilation changes (Blewett et al., 2012). With 

a warming climate, other parameters are sure to change, and the “norm” of today may 

no longer be so tomorrow. Further testing is necessary to determine how the 

interaction between aquatic contaminants and water parameters such as temperature, 

salinity and pH affect the endpoints we measure to determine toxicity. Additionally, 

effort should be made to examine interactions between different pollutants, since they 

rarely, if ever are found individually (Kolpin et al., 2002). Studies performed under a 

range of chemical concentrations could be used to create a system for setting water 

quality standards based on the properties of individuals systems. This would reduce or 

potentially eliminate the possibility of further damaging sensitive ecosystems due to 

laboratory toxicity testing that is unrepresentative of the environment it is intended to 

represent. 
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CHAPTER V 
 
 

CONCLUSION 
 
 

Key Findings 

 The preceding research sought to determine whether environmental variables 

would alter the observed biological effects of estrone in adult male fathead minnows 

(Pimephales promelas).  A series of laboratory exposures were conducted, in replicate, 

to determine if temperature and diet (TEFE), salinity (SAL), and dissolved oxygen 

(DO) would significantly alter physiological and morphological effects.  The 

cumulative findings suggest that all of the parameters, aside from salinity, do 

significantly alter biological measurements. These data emphasize the importance of 

considering physical and chemical environmental parameters when assessing the 

effects of exogenous estrone on male Pimephales promelas. 

 The effects of estrone on vitellogenin induction in male Pimephales promelas 

are apparent in every exposure. In the TEFE and SAL studies, aqueous concentrations 

of 16 ng estrone/L and lower had no significant effect in elevating plasma vitellogenin 

concentrations. Different detection methods were used to quantify aqueous estrone 

concentrations in the DO study, and elevations in plasma vitellogenin concentrations 

were observed at concentrations below 13 ng estrone/L. It is possible that a sampling  
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or assay protocol error lead to a misreading of aqueous concentrations. If this was 

indeed the case, then the data suggest that at environmental estrone concentrations 

below 16 ng/L (SAL study), plasma vitellogenin quantification may not be a 

sufficiently sensitive endpoint to assess the biological effect of estrogenic chemicals. 

Significant interactions between estrone, temperature, and feeding regimen (TEFE 

study) at aqueous an concentration of 78 ng estrone/L suggest that low temperatures 

(18°C), in combination with diet restriction (0.75% body weight/day), may exacerbate 

the induction of vitellogenesis in male Pimephales promelas due to increased cortisol 

production and optimal breeding temperatures occurring near 18°C (Prather, 1957; 

Danylchuk and Tonn, 2001; Smith, 1978). Furthermore, evidence from the same study 

suggest that high temperatures (26°C), in combination with diet restriction may 

suppress vitellogenesis, probably as a result of forgone reproductive function in order 

to sustain survival at a high metabolic rate under diet restrictions (Luquet and 

Watanabe, 1986; Izquierdo et al., 2001). Differences in chloride concentrations in the 

SAL study were not sufficient to modulate estrogenic response. The chloride 

concentrations tested, however, fall well below the United States Environmental 

Protection agency’s chronic water quality criteria threshold of 230 ppm (U.S. 

Environmental Protection Agency, 1988). This subject should be revisited, especially 

in light of recent evidence that chloride often persists at aqueous concentrations much 

higher that those tested in this study (Corsi et al., 2015), and the determination that 

base chloride levels were already relatively high in the control water source (93 ppm). 

If the SAL study were run again, it would be advisable to bring the total chloride 
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concentration up to at least 230 ppm and perhaps approach the chronic toxicity 

threshold for Pimephales promelas (252 ppm) in order to see how the organism 

responds to estrone when chloride-induced osmoregulatory stress is induced to a 

higher degree (Adelman et al., 1976; Evans et al., 1999; Siegel, 2007). Increased 

vitellogenin induction was observed at low dissolved oxygen concentrations and low 

estrone concentrations in the DO study. It is predicted that this modulation in response 

is due to physiological and morphological respiratory changes that occur as a result of 

hypoxia (Evans, 1987; Blewett et al., 2012). It is also important to note that the 

modulation of vitellogenin induction due to temperature changes and feeding regimen 

changes were only observed in the first experiment, at 78 ng estrone/L, and were not 

observed in the second experiment, when the concentration was much higher (135 ng 

estrone/L). A similar effect was evident in the DO study, in which modulation of 

vitellogenin induction via a difference in dissolved oxygen was only observed at low 

estrone concentrations. These data suggest that, at high enough estrone concentrations, 

the modulation of estrogenic effects, through environmental variation, is overwhelmed 

by the effect of estrone. 

 Hematological parameters provided some insight into metabolic function and 

possibly indirect effects of estrone exposure. Blood glucose was found to be elevated 

in all fish exposed at 18°C and fed an ad libitum diet in experiment 2 of the TEFE 

study. The same trend is not observed in the first TEFE experiment, however this 

effect can be explained by a high carbohydrate bioavailability, but reduced cellular 

uptake due to changes in insulin function at low temperatures (Freychet et al., 1971; 
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Larsen et al., 2001). While hematocrit did not show consistent trends throughout all 

three studies, in the DO study, there is some evidence to suggest that renal toxicity 

(Folmar et al., 2001) may lead to reduction in hormonal stimulation of red blood cell 

production (American Society of Hematology, 2015).  

 The effects of temperature were again evident upon examination of sex-based 

morphological endpoints. In the TEFE study, gonadosomatic index was significantly 

elevated in the 18°C in both experiments. Data from the second experiment indicate 

that sum of secondary sex characteristics and gonad maturity to follow the same trend 

– an increase in sexual maturity at lower temperatures. A review of the literature 

(Denton and Yousef, 1975; Smith, 1978) suggests that gonad histology and 

reproductive function peak early in the spawning season, when temperatures warm 

above 15.6°C. As temperatures increase, the percent of mature sperm tapers off until 

fall (Smith, 1978). Vitellogenin data also indicate a possible deceasing trend that may 

be seasonal in nature. Within studies, we see a decrease in average vitellogenin in the 

high estrone treatment from experiment 1 to experiment 2. This is evident in all three 

studies, but the means only differ significantly within the TEFE study and SAL study 

(t-test, p<0.05). 

 
Future Directions 

 When conducting whole-organism exposures, there is an innate level of 

uncertainty that one must contend with.  Disease, genetics, or poor handling of the 

organisms can influence the perceived outcome of the study in ways that cannot be 

predicted. What’s more, there is much ado about conducting “clean” experiments. In 
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truth, there can be no such thing as a clean, whole-organism experiment, at least when 

using model species without an identical genetic profile. It is for this reason that we 

propose that the utmost level of transparency be undertaken when reporting results of 

toxicology tests. To do so, we should embrace the inevitable variability in out 

experiments and record all possible parameters. In this way, we can more effectively 

interpret results in the context of specific exposure scenarios. If taken a step further, 

and by intentionally varying the parameters, one can generate results that apply to 

multiple scenarios. This is arguably a much more useful approach to toxicity testing. 

Ideally, tests conducted at intervals of various combinations of parameters would be 

used for regulatory determination. By doing so, it is possible to generate a database of 

toxicity values for a given toxin based on environmental parameters. To determine the 

chronic toxicity threshold for a given microhabitat, one could simply refer to the 

conditions that correspond to monitoring data from that location and look up the value. 

These values could then be used to set pollution limits to be enforced in specific areas. 

 Results from the preceding studies also indicate a need for baseline data on the 

model organism being used. For example, the potential for seasonal variability in the 

reproductive capacity of Pimephales promelas in the laboratory is largely unknown. 

Smith (1978) discusses seasonal changes in gonad histology as a function of 

temperature, however, our results suggest that Pimephales promelas may retain some 

of this seasonal variation in the laboratory regardless of temperature.  

Additionally, taking some baseline data on the organisms prior to exposure 

may prove to be useful when trying to interpret certain endpoints. While some 
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measurements could be tedious and possibly stressful to the fish, analysis of secondary 

sex characteristics prior to exposure, for example, would be easily and quickly 

accomplished with very little handling of the specimens. A change in the average sum 

of secondary sex characteristics could then be assessed. As fish may already be 

morphologically dominant or subordinate prior to being placed in the exposure, a 

single reading at the end may be deceptive. It may also be useful to examine the 

relationship between individual variation and pathological responses to chemicals. For 

example, it should be assessed whether males with more masculine features (high 

gonadosomatic index, prominent secondary sex characteristics, circulating androgen 

levels, etc.) respond differently to estrogenic chemicals when compared with less 

masculine individuals. If a differing intensity of response was established 

quantitatively, it could be used to standardize the interpretation of observed biological 

effects and create a more accurate overall pathological assessment. 

The results of the three studies undertaken for this thesis project are sufficient 

to justify further examination of the complex interaction between contaminants, such 

as estrone, and environmental variables. This examination should consist of 

observations of a pollutant’s biological effects across a wide range of chemical and 

physical parameters that represent the distribution of the organism. Using this 

information, we can generate a regulatory framework that better protects specific 

microhabitats from the toxic effects of endocrine disrupting chemicals and other 

environmental pollutants. 
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